BOARD OF APPEALS

Date Filed: August 28, 2023

City & County of San Francisco

REHEARING REQUEST FOR APPEAL NO. 23-034

Mid-Sunset Neighborhood Association, Inc, Appellant(s), seeks a rehearing of Appeal No. 23-034 which was decided on August 16, 2023. This request for rehearing will be considered by the Board of Appeals on Wednesday, September 13, 2023, at 5:00 p.m. and will be held in Room 416 of San Francisco City Hall, 1 Dr. Carlton B. Goodlett Place. The parties may also attend via Zoom.

Pursuant to Article V, § 9 of the Rules of the Board of Appeals, the **response** to the written request for rehearing must be submitted by the opposing party and/or Department no later than **10 days from the date of filing, by 4:30 p.m. on or before September 7, 2023,** and must not exceed six (6) double-spaced pages in length, with unlimited exhibits. The brief shall be double-spaced with a minimum 12-point font size. An electronic copy should be e-mailed to: boardofappeals@sfgov.org, julie.rosenberg@sfgov.org, and enochwang@fifelawllp.com.

You or your representative **MUST** be present at the hearing. It is the general practice of the Board that only up to three minutes of testimony from each side will be allowed. Public Comment will be permitted. Except in extraordinary cases, and to prevent manifest injustice, the Board may grant a Rehearing Request only upon a showing that new or different material facts or circumstances have arisen, where such facts or circumstances, if known at the time, could have affected the outcome of the original hearing.

Based on the evidence and testimony submitted, the Board will make a decision to either grant or deny your request. Four votes are necessary to grant a rehearing. If your request is denied, a rehearing will not be scheduled and the decision of the Board will become final. If your request is granted, a rehearing will be scheduled, the original decision of the Board will be set aside, and after the rehearing, a second decision will be made. Only one request for rehearing and one rehearing are permitted under the Rules of the Board.

Requestor or Agent

Signature: Via Email

Print Name: Enoch Wang, attorney for appellant

1	ENOCH WANG (SBN 218904)			
2	FIFE LAW, LLP			
3	300 Montgomery Street, Ste. 631 San Francisco, CA 94104			
4	Telephone: (415) 837-3101 Facsimile: (415) 837-3111			
5				
6	Attorneys for Appellant Mid-Sunset Neighborhood Association, Inc.			
7	BOARD OF APPEALS			
8				
9	CITY AND COUNT	TY OF SAN FRANCISCO		
10	MID-SUNSET NEIGHBORHOOD) Appeal No. 23-034		
11	ASSOCIATION, INC.,)) APPELLANT MID-SUNSET		
12	Appellant,) NEIGHBORHOOD ASSOCIATION,		
13	v.) INC.'S BRIEF IN SUPPORT OF) REHEARING REQUEST		
14	DEPARTMENT OF BUILDING INSPECTION,)		
15	Respondent.)		
16		_)		
17				
18	Appellant Mid-Sunset Neighborhood	Association, Inc. (MSNA) is requesting a		
19	rehearing on its appeal of the building permit	issued by DBI to permitholder Tenderloin		
20	Neighborhood Development Corporation (TN	NDC) (Permit No. 202205053630). Hearing was		
21	held on August 16, 2023 before the Board of	Appeals. The vote was deadlocked 2-2, and		
22	therefore the permit was approved by operation	on of law and the appeal denied. President Swig		
23	was not present at the hearing.			
24	Grounds For Rehearing			
25	"Except in extraordinary cases, <i>and to prevent manifest injustice</i> , the Board may grant a			
26	Rehearing Request only upon a showing that new or different material facts or circumstances			
27	have arisen, where such facts or circumstances, if known at the time, could have affected the			
28	outcome of the original hearing. The written request shall state:			

(i) the nature and character of the new facts or circumstances;

(ii) the names of the witnesses and/or a description of the documents to be produced; and

(iii) why the evidence was not produced at the original hearing." (Rules of the Board of Appeals, Article V, section 9) (emphasis added).

Rehearing is Warranted to Prevent Manifest Injustice

At the August 16, 2023 hearing, State Department of Toxic Substances Control (DTSC) witnesses were allowed time to testify far exceeding the time allocated to MSNA's experts.

Because of the imbalance of time allocated, MSNA did not have the opportunity to demonstrate, importantly, that:

- (1) Removing the existing soil vapor at 2550 Irving Street (the "site") through soil vapor extraction (SVE) would have a <u>substantial and measurable impact</u> on reducing the overall PCE soil vapor contamination in the surrounding neighborhood.
- (2) Conversely, if the existing measured soil vapor onsite is allowed to remain without SVE in place prior to construction, the contamination will remain on the property through construction and continue to pose a risk to neighboring homes.

Remediating the other parcels or right of ways in the area first will not eliminate or make unnecessary remediation at the site. It will be significantly more expensive to remediate the contamination currently existing at the site if construction is commenced without first installing a SVE remediation system.

(3) The six homes where there has been indoor air testing are not the only homes that are likely currently being affected by the PCE contamination vapor intrusion given the findings to date and the PCE soil vapor contour map, which MSNA expert Don Moore, PG, who was unable to attend the August 16 hearing, will be able to present in detail. Mr. Moore's map shows that the PCE soil vapor plume is beneath at least 40 residential and commercial properties above DTSC's health-based screening level, and the map has been verified to be accurate by DTSC. Mr. Moore will also testify how DTSC's recent investigation approach to the former Miracle Cleaners location at the 2550 Irving site was designed not to find PCE and if any was found, it would not have been actionable based on DTSC setting an unattainable standard to define a "source."

It was asked by Vice President Lopez, what is different between February 2023, when

the earlier hearings were held, and August 2023 in terms of contamination? The third round of indoor air sampling was not available when the February 2023 hearings were held. The cancer cluster map had also not been updated with new cases.

The third round of testing is indicative that the same PCE vapor which caused the closure of a significant portion of the building at the site by the Police Credit Union in 2019 will not go away on its own or lower to safe risk levels if left unremediated. These levels have been relatively consistent and persisted now through three rounds of testing. Vapor mitigation at the site will only protect the site's future residents by keeping PCE soil vapor out. It will at most marginally decrease existing soil vapor measured at the property but will not keep soil vapor continuing to spread *from the site* to the neighboring properties.

Because of the time allocated, MSNA experts also did not have the opportunity at the August 16 hearing to demonstrate that DTSC testimony was out of sync with adopted DTSC guidance on the following important areas:

- 1. Determining the reasonable maximum exposure of neighboring households;
- 2. Taking action before full characterization of the neighborhood;
- 3. The preference for permanent remediation over mitigation; and
- 4. Community engagement.

Witnesses and Exhibits To Be Presented at Rehearing

On August 14, 2023, DTSC officials met with residents of six neighborhood homes where indoor air sampling had been done. Three rounds of testing had taken place, with the last round in February 2023 after the hearings on MSNA's appeal of the demolition permit had concluded. During this meeting, DTSC gave a PowerPoint presentation regarding its conclusions of the indoor air testing.

The conclusions were clearly erroneous. They expressed DTSC's opinion that the levels of indoor air contamination did not exceed a risk level that presented a significant risk to human health. This contradicts credible, expert medical opinion. The methodology employed for determination of reasonable maximum exposure was also inconsistent with adopted DTSC guidance.

Because the conclusions were not presented until two days before the hearing, there was

 not time to incorporate important contrary evidence into written briefing or sufficient time to prepare and present this evidence to the Board.

If rehearing is allowed, Lenny Siegel, MSNA's vapor intrusion expert, would testify regarding DTSC guidance on determination of reasonable maximum exposure for neighboring households and the inconsistencies in DTSC methodology employed at the site. Mr. Siegel would also testify in greater detail regarding the significance of the three rounds of indoor air testing at the six neighboring homes. Timur Durrani, MD, MSNA's expert toxicologist, would testify regarding the findings and the health impacts.

Mr. Siegel would also testify regarding DTSC guidance on (1) approving a response action before full characterization of the neighborhood is complete, (2) the preference for permanent remediation, and (3) community engagement. Each of these were important areas where DTSC testimony at the August 16 hearing highlighted inadequacies in the actions taken by DTSC since the February hearings. Mr. Siegel, Mr. Moore, and Dan Grasmick, PE, will compare the actions taken at the site by DTSC with their established guidance, and as compared to other sites.

On August 15, 2023, only one day before the Board of Appeals hearing, DTSC officials met with MSNA representatives to discuss the letter submitted by MSNA to DTSC on July 10, 2023. While MSNA requested the meeting to be scheduled earlier so that it would be able to assess and incorporate DTSC's responses into its presentation before the Board, it was unable to do so because the meeting was held only one day before the hearing and did not conclude until late afternoon.

In the August 15 meeting, DTSC raised questions and concerns regarding MSNA's proposed SVE, including "too little mass" and the "rebound effect". It also expressed concern that SVE may "pull" soil vapor onto other properties or onto the street.

If rehearing is allowed, Mr. Grasmick will testify that these are not valid concerns. Designed properly and pilot tested, the SVE system would have a high rate of efficacy. It would not "pull" any soil vapor onto other properties, and there would be no significant "rebound effect". Mr. Grasmick will testify that setting up an SVE system and pilot testing to determine radius of influence for full scale design can be completed in 30-60 days. This timeline for

installation and testing is well in advance of the anticipated start date of construction in the spring of 2024. Depending on actual start date of construction, the SVE system can then be run for as long as 4-6 months before construction begins. This is long enough to have a measurable reduction in the soil vapor on site. SVE can then be resumed after construction is substantially complete.

Mr. Grasmick will testify that waiting for construction to be completed or waiting until additional testing and/or remediation on other properties has been completed before remediating at 2550 Irving is far less effective than implementing SVE prior to construction. It will be significantly more expensive to install SVE after construction is completed. There is no benefit whatsoever to delay remediation, only the cost and detriment of continuing, ongoing soil vapor contamination emanating from the property into the neighboring properties. This level of contamination will not go away on its own or through VIMS, which is the currently approved mitigation in the Site Management Plan. Monitoring will be required at all the properties regardless of which parcel or right of way is remediated first.

Mr. Grasmick will also testify regarding DTSC guidance on "source" definition. He will testify that DTSC testimony at the August 16 hearing regarding "source" was unconventional and out of sync with DTSC guidance and treatment at other sites.

The Board has jurisdiction and the authority to condition construction on installation of a remediation system prior to beginning construction particularly where the installation will not cause delay to the project.

Appellant Mid-Sunset Neighborhood Association, Inc. respectfully requests that the Board grant its request for rehearing.

Date: August 28, 2023 FIFE LAW, LLP

By Enoch Wang
Attorneys for Appellant

- 1					
1	ENOCH WANG (SBN 218904)				
2	FIFE LAW, LLP 300 Montgomery Street, Suite 631 San Francisco, CA 94104				
3					
4	Telephone: (415) 837-3101 Facsimile: (415) 837-3111				
5	, , ,				
6	Attorneys for Appellant Mid-Sunset Neighborhood				
7	Association, Inc.				
8	BOARD OF APPEALS				
9	CITY AND COUNTY OF SAN FRANCISCO				
10	MID GUNGET MELGUDODUGOD	131 22 024			
11	MID-SUNSET NEIGHBORHOOD ASSOCIATION, INC.,) Appeal No. 23-034			
12	Appellant,	DECLARATION OF LENNY SIEGELIN SUPPORT OF APPELLANT MID-			
	V.) SUNSET NEIGHBORHOOD			
13	DEPARTMENT OF BUILDING) ASSOCIATION, INC.'S REQUEST) FOR REHEARING			
14	INSPECTION,)			
15	Respondent.)			
16	I, Lenny Siegel, declare:				
17	1. I have been Executive Director of the	he Center for Public Environmental			
18	Oversight, which was originally a project of San F	rancisco State University, since 1994. I have			
19	been recognized as one of the American environm	ental movement's leading experts on both the			
20	vapor intrusion pathway and military facility conta	amination, having provided technical			
21	assistance to and visited scores of community orga	anizations across the U.S. I have served on			
22	several ITRC (Interstate Technology & Regulatory	y Council) work teams on environmental			
23	remediation, including Vapor Intrusion Mitigation	, and a dozen National Research Council			
24	committees addressing military environmental issues.				
25	2. For more than twenty years, I have	provided input to DTSC and other state			
26	agencies on the language in multiple guidance documents addressing vapor intrusion, as a				
27	member of DTSC advisory groups, in written comments, and at public meetings and workshops.				
28	3. I have received recognition as one of	of the South Bay Area's leading advocates for			

the development of affordable housing, having served on the Mountain View City Council from 2015-2018 (Mayor in 2018). Since 2017 I have served on Santa Clara County's Housing Bond Oversight Committee, considered a model – by the county's Civil Grand Jury, among others – for the effective oversight of affordable housing development.

- 4. As consultant for Mid-Sunset Neighborhood Association, Inc. (MSNA), I am familiar with the development at 2550 Irving Street in San Francisco, and the environmental issues regarding the PCE contamination found on-site. I testified in front of the Board in February 2023 and at the August 16, 2023 hearing. The facts contained in this declaration are based on my own personal knowledge and experience, and if I were called and sworn as a witness I could and would testify competently thereto.
- 5. I attended the August 16 Board of Appeals (BOA) hearing, and I heard and saw all the testimony, including the lengthy assertions by representatives of the Department of Toxic Substances Control. DTSC went to great lengths to justify its failure to take action to adequately protect current and future residents of the area centered on 2500 Irving Street from PCE exposure, but I was not given sufficient time at the hearing to rebut DTSC's assertions, some of which run counter to DTSC's published guidance.
- 6. DTSC's lengthy report on "Off-Site Residential Indoor Air," a true and correct copy of which is attached as **Exhibit A**, was not made available until August 11th, after briefs for the appeal were filed, and DTSC made its PowerPoint presentation—the one which was cited at the August 16th BOA hearing—to neighborhood residents in a closed meeting the evening of August 14th. Thus, I was unable to submit a written critique.
- 7. I am prepared to show that DTSC's failure to initiate or require subsurface remediation is inconsistent with official DTSC guidance documents. Furthermore, I am prepared to challenge its claim that "vapor intrusion risk from sub-surface PCE is low or insignificant for all [nearby residential] properties." Finally, I am prepared to show that DTSC's failure to adequately engage the community not only ignored its assurances to the Board of Appeals but DTSC's own policies.

10. The timeline is as follows:

1

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

July, 2020. The Police Credit Union executes a Voluntary Cleanup Agreement with DTSC, an agreement that it pulls out of in January, 2022.

September, 2020. The Police Credit Union's consultant, AllWest Environmental, finds PCE far above the screening level in the soil gas in front of adjacent homes. The results are published in November, 2020. This suggests the need to sample inside those homes.

January-February, 2021. DTSC and TNDC sign a CLRRA (California Land Reuse and Revitalization Act) agreement for 2550 Irving.

September 2, 2021. TNDC submits and DTSC approves a response plan for 2550 Irving. September 7, 2021. AllWest begins indoor air sampling in six adjacent homes, following a workplan submitted to DTSC on August 24, 2021.

11. Clearly the area was not fully characterized -- no samples had been taken inside neighboring homes -- when DTSC approved TNDC's remedy. Indeed, many other homes located above the PCE soil gas plume have never been sampled. DTSC may argue that CLRRA provided a justification for selecting a final remedy before full characterization, but I suggest that the CLRRA agreement should either have been delayed or should have contained a clause authorizing re-opening of the remedy selection based upon additional findings of contamination.

12. At the August 16th hearing, DTSC argued that SVE at this time could provide only temporary relief because contamination from remote sources could re-establish itself. In support of this argument, DTSC reported that there were numerous nearby businesses (current and former) that could be sources of PCE at 2550 Irving. Attached as **Exhibit B** is a true and correct copy of DTSC's map that was presented to the neighborhood in 2022. At least one of those businesses is downgradient (downhill underground) from 2550 Irving Street, so it could not be such a source.

- 13. It is implausible that any of them, other than those properties on the 2500 block of Irving Street, could be a source of soil gas migration, because of the declining soil gas concentrations shown as one moves away from the 2500 block of Irving. The only plausible pathway from remote sources is through leaks in the Irving Street sewer line. It would be quite a coincidence that such a leak occurred in front of two former dry cleaners, but even if it did, conducting soil vapor extraction would not pull PCE contamination from those potential remote sources unless they were currently releasing PCE into the sewer line, and there is no evidence that any upgradient business is currently using PCE. (The State of California has phased out its use.)
- 14. DTSC's refusal to recommend remediation, or even mitigation of adjacent homes, is based on its unjustified assertion of insignificant exposures. DTSC's report on residential indoor air, as summarized in the August 14th presentation, appears to deliberately understate the prevalence of unacceptable levels of vapor intrusion in the six homes sampled. (It inappropriately rules out vapor intrusion at other nearby homes because no one has sampled the indoor air at the other homes within the contour line of the PCE residential soil gas screening level of $16\mu g/m^3$.)
- 15. In its report, DTSC ignores the real-time sampling, conducted with a Hapsite device by AllWest for the Police Credit Union in September 2021. Two homes where DTSC now concludes vapor intrusion was not occurring clearly had elevated levels of PCE coming from the subsurface, including the one where sealing the downstairs shower drain reduced PCE concentrations.

16. In the "Off-Site Residential Indoor Air" report's Table 4, a true and correct copy of which is attached as **Exhibit C**, DTSC used averaging (arithmetic mean) to minimize the reported indoor air concentrations in the houses. Under the concept of Reasonable Maximum Exposure, more than two sampling events are necessary before averaging is even considered.

- 17. DTSC/CalEPA's February 2023 "Supplemental Guidance" (p. 42) states, "The maximum concentration should be used to estimate risk until sufficient indoor air data has been collected.... Averaging over time should only occur if indoor air concentrations are relatively stable and/or decreasing."
- 18. At the August 16th hearing, a DTSC representative referred to the decision-making criteria used by EPA and DTSC in selecting environmental remedies. The "Supplemental Guidance" (p. 50) lists the most important of those criteria:
 - Overall protection of human health and the environment;
 - Long-term effectiveness and permanence;
 - Short-term effectiveness;
 - Reduction of toxicity, mobility, or volume;
 - Community acceptance;
 - Implementability; and
- Cost.

- 19. Note the inclusion of "community acceptance." While DTSC is not required to do what community members propose, it is obligated to engage in "two-way dialogue." Yet at the August 16th hearing, DTSC staff were unable to come up with any recent examples of community engagement other than their attendance at one of the February 2023 BOA hearings. The meeting of DTSC management with me and MSNA on August 15th was rescheduled by DTSC to occur after DTSC had already submitted its brief opposing MSNA's request for remediation before construction.
- 20. The same "Supplemental Guidance" (p.50) paragraph also states one of MSNA's main points: "Active remediation is the preferred response action to reduce or eliminate future

VI risk at buildings." Mitigation systems are valuable, but they are designed to prevent subsurface vapors from entering overlying buildings, not to treat or remove those vapors.

- 21. I believe in the scientific method. That doesn't mean that one accepts the conclusions of a scientist or government agency simply because they have credentials. It means testing their conclusions against the data and the literature on the subject.
- 22. My expertise is in explaining complex environmental phenomena, such as vapor intrusion, to the public at large. That is because non-scientists (or scientists with other areas of expertise) can make valuable contributions to environmental decision-making. That value is recognized by DTSC and other agencies in their guidance documents and often in their practices. Unfortunately, at 2550 Irving Street, DTSC seems to treat the neighborhood as an enemy.
- 23. I spend a good deal of my time advocating for the development of affordable housing. When I was first contacted by MSNA, they assured me that they were not against affordable housing in the Sunset. No doubt there are some residents who feel that way, but I believe the neighborhood has been unfairly stigmatized as NIMBY by San Francisco housing activists, government officials, and element of the news media. I find it unfortunate that the enthusiasm for building affordable housing has created a situation in which people who cannot afford to choose where they live may in the long run be exposed to unacceptable levels of toxic vapors. Vapor mitigation is good as long as it is working as designed, but it requires long-term management for the life of the contamination, or the building.
- 24. Finally, as a housing advocate, I believe it is important to consider neighbors' concerns when proposing affordable housing. Failure to consider valid concerns, such as environmental contamination, will undermine public support for the housing that our region needs.

I hereby declare under penalty of perjury under the laws of the State of California that this declaration is true and correct, and that it was executed on this 28th day of August, 2023, in Mountain View, California.

Lenny Siegel

Lenn Siegel

Off-Site Residential Indoor Air and Soil Vapor Report – March 2022 and February 2023

2500 – 2550 Irving Street Sites San Francisco, California 94122 Site Code: 202402

August 11, 2023

Prepared by:

Department of Toxic Substances Control – Site Mitigation and Restoration Program 700 Heinz Avenue, Suite 200 Berkeley, California 94710

Off-Site Residential Indoor Air and Soil Vapor Report - March 2022 and February 2023

2500 - 2550 Irving Street Sites San Francisco, California 94122

Site Code: 202402

August 11, 2023

Prepared by:

Dennis Palacios

PARKE SHALL

Engineering Geologist

Marikka Hughes, PG Environmental Program Manager

Branch Chief

Approved by:

Parag Shah

Hazardous Substances Engineer

Table of Contents

Executive Summary	vi
Section 1.0 Introduction	1
Section 1.1 Purpose/Objectives	2
Section 1.2 Report Structure	2
Section 2.0 Site Description and Background	2
Section 2.1 Site Background	3
Section 3.0 Scope of the Offsite Investigation	4
Section 3.1 Soil Vapor Probe/Sub-Slab Vapor Pin Installation	5
Section 3.2 Soil Vapor and Indoor/Outdoor Air Collection and Laboratory Analysis	5
Section 3.2.3 Laboratory Analyses	7
Section 4.0 Analytical Results and Data Interpretation	8
Section 4.1 Residence: 1271 26th Avenue	8
Section 4.2 Residence: 1275 26th Avenue	8
Section 4.3 Residence: 1281 26th Avenue	9
Section 4.4 Residence: 1276 27th Avenue	10
Section 4.5 Residence: 1280 27th Avenue	10
Section 4.6 Residence: 1284 27th Avenue	10
Section 4.7 Helium Results	11
Section 5.0 Discussion of Results	12
Section 5.1 Soil Vapor	12
Section 5.2 Indoor Air	13
Section 5.3 Outdoor Ambient Air	13
Section 6.0 Conclusions	14
Section 7.0 Recommendations	15
Section 8.0 References	16

Figures

Figure 1	Vicinity Map
Figure 2	Site Plan with Sample Locations
Figure 3	PCE Trends in Soil Vapor, 5 Feet Below Ground Surface
Figure 4	PCE Trends in Soil Vapor, 15 Feet Below Ground Surface
Figure 5.1	1271 26th Avenue, Indoor Air PCE/TCE Sampling Results March 2022/ February 2023
Figure 5.2	1275 26th Avenue, Indoor Air PCE/TCE Sampling Results March 2022/ February 2023
Figure 5.3	1281 26th Avenue, Indoor Air PCE/TCE Sampling Results March 2022/ February 2023
Figure 5.4	1276 27th Avenue, Indoor Air PCE/TCE Sampling Results March 2022/ February 2023
Figure 5.5	1280 27th Avenue, Indoor Air PCE/TCE Sampling Results March 2022/ February 2023
Figure 5.6	1284 27th Avenue, Indoor Air PCE/TCE Sampling Results March 2022/ February 2023
Figure 6	Combined Shallower Soil Vapor Probe PCE Data
Figure 7	Combined Deeper Soil Vapor Probe PCE Data

<u>Tables</u>

Table 1	Summary of Indoor Air and Outdoor Ambient Air Analytical Results
Table 2	Summary of Soil Vapor and Sub-Slab Soil Vapor Analytical Results
Table 3	Summary of Helium Analytical Results
Table 4	PCE Concentrations in Indoor Air and Estimated Risks

<u>Appendices</u>

Appendix A	Vapor Probe Construction Design
Appendix B	Indoor/Outdoor Ambient Air and Soil Vapor Sample Field Log
Appendix C	Building Survey and Interview Form
Appendix D	Analytical Laboratory Reports

Acronyms and Abbreviations

μg/m³ micrograms per cubic meter AllWest Environmental, Inc.

ASTM American Society for Testing and Materials

bgs below ground surface

CLRRA California Land Reuse and Revitalization Act

COC chain of custody

CPEO Center for Public Environmental Oversight

CRWQCB California Regional Water Quality Control Board

DTSC Department of Toxic Substances Control
DTSC SL DTSC-modified residential screening level

ELAP Environmental Laboratory Accreditation Program

GC-MS gas chromatograph-mass spectrometer HERO DTSC Human and Ecological Risk Office

HHRA human health risk assessment

HSC Health and Safety Code

HVAC heating, ventilation, and air conditioning

in. Hg inches of mercury mL/min milliliter per minute

MSNA Mid Sunset Neighborhood Association

Pace Pace Analytical ppb parts per billion PCE tetrachloroethene

PID photoionization detector
PRP Potentially Responsible Party
RMD RMD Environmental Solutions, Inc.

RSL regional screening level
SIM selective ion methodology
SRA Site Remediation Account
SVA standard voluntary agreement

TCE trichloroethene

TNDC Tenderloin Neighborhood Development Corporation

TOV total organic vapors
TPCU The Police Credit Union

USEPA United States Environmental Protection Agency

USGS United States Geological Survey

VOC volatile organic compound

Executive Summary

The Department of Toxic Substances Control (DTSC) protects the people of California and the environment from the harmful effects of toxic substances, in part by investigating releases of hazardous substances.

When a release of a hazardous substance has occurred or is about to occur, Health and Safety Code (HSC) Section 25358.3(b)(1), authorizes DTSC to undertake those investigations, monitoring, surveys, testing, and other information gathering necessary to identify the existence, source, nature, and extent of the hazardous substances involved and the extent of danger to the public health or environment. HSC Section 25355.5(c) authorizes DTSC to expend funds from the state account upon appropriation by the Legislature to conduct activities necessary to verify that an uncontrolled release of hazardous substances has occurred at a suspected hazardous substance release site. DTSC has undertaken the sampling outlined in this report pursuant to these authorities.

The properties evaluated in this report are located at 1271, 1275, and 1281 26th Avenue and 1276, 1280, and 1284 27th Avenue in San Francisco, California. Initial sampling of the properties occurred under a Standard Voluntary Agreement (SVA), entered into on July 6, 2020, by DTSC and The Police Credit Union (TPCU) pursuant to HSC Section 25355.5(a)(1(C). The purpose of the agreement was to investigate, evaluate, and/or remediate a release, threatened release, or potential release from 2500-2550 and 2525 Irving St., including any offsite areas to which hazardous substances may have migrated. The SVA also provided a mechanism for DTSC to recover its oversight costs.

The initial sampling conducted under the SVA in September and October 2021 indicated that tetrachloroethene (PCE) was detected in the samples from the six residences. However, prior to the collection of the samples, household chemicals were not removed from the residences and ventilation was not restricted; therefore, the data from this event are not considered representative and additional indoor air evaluation was warranted.

In February 2022, TPCU terminated the SVA and ceased to conduct further assessment. In response to community concerns, DTSC requested Site Remediation Account (SRA) funds to conduct additional monitoring in six residential properties north of 2550 Irving Street.

In March 2022 and February 2023, DTSC collected offsite indoor air samples, outdoor ambient air samples, and soil vapor samples for volatile organic compound (VOC) analysis (Offsite Investigation). The six offsite residential properties located north of the Site on 26th and 27th Avenues were evaluated.

The data from the Offsite Investigation were compared to conservative DTSC screening levels based on default, upper-bound assumptions of exposure and toxicity. The presence of chemicals at concentrations greater than their respective screening levels does not necessarily indicate that adverse impacts are occurring or will occur but does suggest that further evaluation of potential human health risk may be warranted.

Concentrations exceeded the DTSC-modified residential air screening level of $0.46~\mu g/m^3$ at four of the six residences during each sampling event. PCE was detected in all indoor air samples during both sampling events. The concentration in indoor air was $2.01~\mu g/m^3$ in March 2022. However, soil vapor data and remaining indoor air results from the same residence indicate that result is unlikely to be associated with vapor intrusion. For example, PCE was detected on the lower level of the residence at a lower concentration than the upper level in February 2023.

The results of the indoor air and soil vapor sampling indicate that vapor intrusion may be occurring at the six residential properties adjacent to the Site (property formerly owned by TPCU). The mean PCE concentrations were used to estimate vapor intrusion risks. Risk was assessed by dividing the mean indoor air concentrations of PCE by the DTSC residential screening level for the cancer endpoint $(0.46 \,\mu\text{g/m}^3)$ and multiplying by $1x10^{-6}$. Using the screening level that is based on default, upper-bound assumptions of exposure and toxicity, the maximum estimated inhalation risk was $2x10^{-6}$ which is at the low end of the risk management range of $1x10^{-6}$ to $1x10^{-4}$ cited in the National Oil and Hazardous Substances Pollution Contingency Plan (1990) and incorporated in Chapter 6.8 Section 25356.1.5(a)(1) of the California Health and Safety Code (DTSC, 2022a).

The Offsite Investigation also indicated the following:

- PCE concentrations in soil vapor exceeded DTSC-modified screening level (15 micrograms per cubic meter [μg/m³]) near the six residences during both sampling events.
- PCE was detected once at one of the three outdoor ambient air sampling locations.

While the estimated risks in the six residences were low and the estimated risk at only one residence slightly exceeded the point of departure, which is based on one in one million lifetime cancer risk (1x10⁻⁶), DTSC is recommending follow up investigation. Out of an abundance of caution and in response to community concerns, DTSC recommends additional soil gas sampling at the existing wells on 26th and 27th Avenues during the dry season to assess seasonal variation in soil gas concentrations. Soil gas sampling should be conducted after the 2550 Irving Affordable Housing building is complete and soil gas concentrations equilibrate. In addition, DTSC recommends concurrent indoor air sampling at the two residences which showed the greatest variability in empirical attenuation factors (1275 26th Avenue and 1276 27th Avenue). DTSC will also continue overseeing investigation and mitigation activities at 2550 Irving Street, the Former Albrite Cleaners site, 2513 Irving Street, and 1300 26th Avenue.

Section 1.0 Introduction

In accordance with Health and Safety Code (HSC) Section 25355.5(a)(1)(C), Department of Toxic Substances Control (DTSC) and The Police Credit Union (TPCU) entered into a Standard Voluntary Agreement (SVA), regarding 2500-2550, and 2525 Irving Street (Properties), San Francisco, California, on July 6, 2020. The Properties are identified by San Francisco County's Assessor's Parcel Number(s) 1724-038, 1781-047 and 1781-048. The SVA applied to the Properties and any off-site area to which hazardous substances have or may have migrated from the Properties.

The 2550 Irving Street Site (Site) is approximately 0.44 acres in size and is bordered by 26th Avenue to the east and 27th Avenue to the west. TPCU owned the Site from 1987 to 2022. Per the conditions in the SVA, TPCU conducted a series of subsurface investigations to further delineate tetrachloroethene (PCE) contamination previously identified at the Site and to assess the risk posed by the contamination.

On February 1, 2021, DTSC entered into a California Land Reuse and Revitalization Act (CLRRA) agreement applying to 2550 Irving St. with Tenderloin Neighborhood Development Corporation (TNDC) a non-profit entity and prospective purchaser that planned to acquire the property to develop affordable housing. The CLRRA agreement provides TPCU with specified immunities from liability for certain response costs or damage claims under relevant California statutes. TNDC purchased the 2550 Irving St. Property from TPCU on June 15, 2022.

In response to DTSC's recommendation and residents' requests, TPCU conducted additional soil vapor and indoor air sampling at the six residential properties adjacent to the Site. The findings were documented in an AllWest Environmental, Inc. (AllWest) Report submitted by TPCU in September 2021. Subsequently, in February 2022, TPCU terminated the SVA. On June 15, 2022, TPCU sold the property to TNDC. In April and May 2023, TNDC demolished the former TPCU building in preparation for the planned affordable housing development. In response to DTSC's recommendation and neighborhood requests for additional characterization of the location of the former dry cleaner, TNDC completed a characterization of the former Miracle Cleaners parcel (a portion of the Site) with membrane-interface probe (MIP), soil sampling, soil sample testing by laboratory and by field test kits that can detect liquid PCE, grab groundwater sampling, and other observations." on June 27, 2023. A MIP is a semi-quantitative, field-screening device uses heat to volatilize and mobilize contaminants to detect volatile organic compounds (VOCs) in soil and sediment. This technology is designed to help strengthen lines-of-evidence to evaluate for a potential PCE-source zone at the Site.

In response to the potential threat posed by offsite migration and soil vapor intrusion, DTSC used state funds in accordance with HSC Section 25355.5(c) to evaluate soil vapor intrusion.

This report was prepared by DTSC and presents the results of offsite sampling adjacent to the Site formerly occupied by TPCU. Offsite properties evaluated in the assessment include six residential properties located north of the Site on 26th and 27th Avenues.

Section 1.1 Purpose/Objectives

Investigations at the Site have identified chemical impacts to soil vapor which may be associated with historical Site activities or with an offsite source. Specifically, chlorinated volatile organic compounds (VOCs) were detected in soil vapor above DTSC's screening levels at the Site and in the vicinity of neighboring residences. The primary chemical of concern in soil vapor at the Site is PCE, which, if present in significant concentrations offsite, has the potential to migrate into indoor air spaces. Assessment of offsite soil vapor and indoor/outdoor air was proposed in the scope of work for Exhibit A as part of DTSC SRA funds Contract 21-T5020 (Contract), executed on February 7, 2022, which served as the work plan for this work.

The objectives of the Offsite Investigation were to further investigate offsite soil vapor concentrations, evaluate the potential for vapor intrusion into the residences north of the Site, and further evaluate residence-specific, empirical attenuation factors for potential use for risk management. Soil vapor and indoor air samples were collected and analyzed for VOCs to evaluate concentrations against DTSC human health screening levels.

Section 1.2 Report Structure

This Report has been organized into the following sections: introduction, site description and background, scope of the Offsite Investigation, analytical results and data evaluation, discussion of results, conclusions, and recommendations.

Section 2.0 Site Description and Background

The Site is irregularly shaped and totals approximately 0.44 acres. The Site is located in a mixed residential and commercial area in the Sunset District of San Francisco, California. The Site is bound by 26th Avenue to the east, 27th Avenue to the west, Irving Street to the south and residential homes to the north. Access to the property is from Irving Street and/or 27th Avenue. The Site was developed with a two-story office building (approximately 18,561 square feet) and parking lot. The building, now demolished, was occupied by TPCU, the property owner from 1987 to 2022.

Across Irving Street, there is another property referred to as the Former Albrite Cleaners, which operated as a dry-cleaning business. The Albrite property encompasses a 2,500 square foot area and is occupied by an approximately 1,500 square foot two-story building. Currently, the ground floor of the building is being used for storage by a glass business and the second floor is used as residential and is occupied. On October 29, 2021, DTSC issued an Imminent and Substantial Endangerment Determination and Order and Remedial Action Order to two responsible parties and/or liable parties as defined by HSC Section 25323.5. PCE was reportedly used at the Site between 1993 and 1994, at which point dry cleaning activities were moved off-Site to an unspecified location.

A Site vicinity map is presented as *Figure 1*. A Site plan is included on *Figure 2*. The residences north of the Site are two-story wood frame and stucco single family homes with slab-on-grade foundations, garages and storage areas on the ground floor, and living spaces on the ground and second floors.

Based on a review of the United States Geological Survey (USGS) Note 36, California Geomorphic Provinces map, the property is located in the Coast Ranges geomorphic province of California. The coastline is uplifted, terraced and wave-cut. The Coast Ranges are composed of thick Mesozoic and Cenozoic sedimentary strata. The northern and southern ranges are separated by a depression containing the San Francisco Bay (AllWest, 2019).

Soils encountered at the site consist of fine to coarse-grained, well-graded gravelly sand and sandy gravel fill material from beneath asphalt surface pavement/ground surface to approximately 1 to 2 feet below ground surface (bgs) (AllWest, 2020). From approximately 1 to 2 feet bgs to 15 feet bgs, soils are characterized as very fine to fine-grained poorly-graded sand. Soils encountered by AllWest during a subsurface investigation consisted of fine to coarse-grained, poorly to well-graded sand to the maximum explored depth of approximately 90 feet bgs. Additional subsurface details are provided in the AllWest's *Subsurface Investigation Report*, dated October 10, 2019.

According to the California's Groundwater Bulletin 118, the Site is located in the San Francisco Bay Hydrologic Region and lies in the Merced Valley Groundwater Basin (Basin No. 2-035). The Merced Valley Groundwater Basin is located on the western portion of the San Francisco Peninsula (Phillips, et al., 1993).

According to the California Regional Water Quality Control Board (CRWQCB), San Francisco Bay Region San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan), Table 2-2, the Site lies in the Westside A Groundwater Basin (Basin ID Number 2-35A), which has designated existing and potential beneficial uses including municipal, process, industrial and agricultural.

In December 2019, Path Forward Partners, Inc. (Path Forward) conducted a soil vapor and groundwater investigation at the Site and groundwater was encountered in two soil borings at depths of 77.4 and 79.2 feet bgs (Path Forward, 2021).

Section 2.1 Site Background

The Site was undeveloped prior to the construction of two commercial structures on the middle of the property circa 1927 with occupants including a variety of stores/shops and a dry cleaner. Between the late 1920s and 1932, another building was constructed on the Site and utilized by an undertaker through at least the mid-1950s.

From at least 1940 to the mid-1960s, automotive service stations operated at the 26th (2500 Irving Street) and 27th Avenue (2550 Irving Street) corners of the Site. In 1965, the original, eastern portion of the existing building was constructed on the Site, occupied by a mortuary/funeral chapel. By 1966, the building increased in size to the current configuration and the customer parking lot was added. The mortuary operated at the Site (Parcel #1724-038) through the mid-1980s. TPCU took ownership of the Site in 1987.

In September and October 2021, soil vapor and indoor air sampling was conducted by AllWest on behalf of TPCU in six residences north of the Site. The investigation included screening for variations in indoor air quality using a HAPSITE® portable gas chromatograph-mass spectrometer (GC-MS). Indoor air samples were collected over a 24-hour period on the ground floor and second floor of the residences. In five of the six homes, PCE was detected at concentrations of <0.107 to 0.774 micrograms per cubic meter (µg/m³). In the sixth home (1271 26th Avenue), PCE was detected at concentrations ranging from 1.25 to 29.2 µg/m³. This investigation had several limitations that created high uncertainty with the collected data and prevented DTSC from considering these data as representative of potential vapor intrusion conditions. These limitations included failure to identify and remove household chemicals prior to sampling, and failure to restrict the opening of windows and doors to prevent ventilation and potential resulting dilution of the indoor air being sampled.

TPCU terminated the SVA with DTSC and ceased to conduct additional investigation of potential vapor intrusion at the six residences. In response to community concerns, DTSC requested Site Remediation Account (SRA) funds to conduct additional monitoring in six residential properties north of 2550 Irving Street. DTSC then issued the Contract to RMD Environmental Solutions, Inc. (RMD) to evaluate potential vapor intrusion at the six residences. DTSC ensured the above work plan deviations/limitations mentioned in the 2021 investigation were not repeated. DTSC's contractor, RMD, collected indoor air and soil vapor samples in March 2022 and February 2023 at the same six residences north of Site that AllWest previously sampled.

Section 3.0 Scope of the Offsite Investigation

The Offsite Investigation activities focused on the six residential properties, located north of the Site, and included the following actions:

- Community outreach, including coordination with residents, and procuring access agreements to conduct investigation activities on offsite properties.
- Survey and removal of selected household products that potentially contained chlorinated VOCs, to minimize confounding effects from consumer products, prior to indoor air testing. Closing/securing residence doors and windows,
- Indoor air testing of each residence, at several locations within each residence.
- Installation of one sub-slab soil vapor pin at 1271 26th Avenue located in the garage to assess the concentrations of PCE in the sub-slab (see *Figure 2*).
- Soil vapor sampling events were conducted in March 2022 and February 2023 and included sampling of previously installed soil vapor probes SVP-28A/B through SVP-33A/B, a vapor pin at 1271 26th Avenue, indoor air at each residence, and outdoor ambient air samples. These activities are further detailed in the following sections. Sample locations are shown on *Figure 2*.

The second round of sampling was originally scheduled for September 2022 during the dry season. However, due to requests from most of the residents and a representative of the Center

for Public Environmental Oversight (CPEO), who was assisting the Mid Sunset Neighborhood Association (MSNA), DTSC delayed the sampling to early 2023. Sampling was ultimately conducted in February 2023.

Section 3.1 Soil Vapor Probe/Sub-Slab Vapor Pin Installation

The soil vapor probes sampled during the March 2022 and February 2023 events were constructed in 2020 by AllWest, on behalf of TPCU, in accordance with DTSC's *Advisory-Active Soil Gas Investigation* (Soil Gas Advisory) dated July 2015. AllWest installed the soil vapor probes at approximate depths of 5 feet bgs (shallow) and 15 feet bgs (deep) in each boring. Shallow soil vapor probes were labeled with an "A" and deep soil vapor probes were labeled with a "B" in the sample nomenclature. Installation details are discussed in AllWest's *Soil Vapor Investigation Report*, dated November 17, 2020. Soil vapor probe construction diagrams are included in *Appendix A*.

A sub-slab soil vapor pin was installed in the garage at 1271 26th Avenue. Due to the presence of a relatively thin ground-floor slab (slab is about 2 inches thick), the sub-slab vapor point could not be installed with the intake below the foundation slab without protruding above the floor surface, presenting a tripping hazard within the residence. Therefore, on February 2, 2023, a temporary Cox-Colvin Vapor PinTM was installed, sampled, and removed within the same day. The sub-slab vapor point was installed using a hand-held rotary-hammer drill to core a 5/8-inch diameter hole through the entire thickness of the concrete slab using the drill guide, exposing the underlying fill material. A silicone sleeve was placed around the stainless-steel Vapor PinTM to form a seal against the concrete slab before the Vapor PinTM was tapped into place (with its intake below the concrete surface) using a dead blow hammer. The Vapor PinTM was removed after sampling and the hole was filled with concrete to match the existing surface.

Section 3.2 Soil Vapor and Indoor/Outdoor Air Collection and Laboratory Analysis

The soil vapor sampling was conducted in accordance with the DTSC *Advisory-Active Soil Gas Investigations*. The sub-slab vapor point was allowed to equilibrate for a period of at least 2 hours prior to sampling. Copies of the field sampling logs are included in *Appendix B*. The sampling locations are shown in *Figure 2*.

Section 3.2.1 Indoor/Outdoor Air Sample Collection

Prior to initiating sampling activities, a building survey was conducted in each residence on both the ground and upper floors. The purpose of the building surveys was to document building characteristics, determine sample locations, and assess the presence of household products that have the potential to interfere with the indoor air quality evaluation. Building surveys included screening for total organic vapors (TOV) using a parts-per-billion (ppb) range photo-ionization detector (PID). Field staff assessed residences for the presence of potential interfering household products, such as stain removers, glues, degreasers, cleaning solutions, and paints. Residents were asked to remove any household products identified during the building survey as possibly interfering with the sampling. Field forms for the building surveys and chemicals and materials identified during the March 2022 and February 2023 are included in *Appendix C*. Building surveys

also evaluated the presence of potential preferential pathways where subsurface vapors may intrude into the indoor air space. Preferential pathways can include openings in the building foundation, such as utility conduits associated with bathroom or kitchen water and sewer connections. Preferential pathways were screened with the PID. Locations of potential subsurface vapor intrusion pathways were considered when selecting indoor air sampling locations.

During the March 3 and 4, 2022 sampling event, a total of 15 indoor air samples (including one duplicate) and two outdoor ambient air samples were collected. During the February 1 and 2, 2023 sampling event, a total of 17 indoor air samples (including one duplicate sample) and three outdoor ambient air samples were collected. Samples were collected in laboratory-prepared, batch-certified, 6-liter Summa™ canisters with lab-calibrated flow controllers, particulate filters, and vacuum gauges. Flow rates of approximately 3.5 milliliters per minute (mL/min) were used to fill the canisters over an approximate 24-hour period. The pertinent field observations, initial and final pressure readings, and times were recorded on a field sampling form. A sketch was used to document each sample location. The outdoor ambient air samples were collected in the backyards of the residences at 1271 26th Avenue, 1284 27th Avenue, and 1276 27th Avenue.

Procedures followed for the collection of indoor and outdoor ambient air samples were:

- The Summa[™] canister was placed at the sampling location.
- The flow controller and vacuum gauge were secured to the Summa[™] canister by a quick-connect valve.
- Once the canister was opened, the initial vacuum was documented on an air sampling field form.
- If the initial vacuum was above -25 inches of mercury (in. Hg), the canister(s) was replaced to ensure that a proper sample volume was collected.
- Approximately one hour prior to the completion of the approximate 24-hour sampling interval, the vacuum of the canisters was observed. If the canister vacuum was greater than -5 in. Hg, the canister was closed by removing the quick connect flow controller. If the vacuum was less than -5 in. Hg, the canister was left open until an approximate vacuum of -5 in. Hg was reached.
- Sample times and vacuums were documented on the air sampling field forms.
- Sample canister labels were completed with a unique sample identification number (e.g., IAQ-1275-1), date and time of sample collection, initial and final vacuum, canister serial number, and analytical method.
- Sample canisters were submitted to the analytical laboratory under standard chain-ofcustody (COC) protocols.

Residents were allowed to occupy their residences during sampling and were requested to operate heating, ventilation, and air conditioning (HVAC) systems normally for the season and day. Building HVAC settings were noted in the building survey forms. A chain-of-custody (COC) seal was placed across windows and exterior doors (except a minimum of two egress doors per California Fire Code) to provide evidence that they were not opened during the sampling period to minimize indoor air dilution. Fire egress doors were not custody-sealed, but they were kept closed as much as possible during the sampling period.

During the retrieval of indoor air samples on February 2, 2023, it was determined that the canister from the upper floor of 1284 27th Avenue did not collect the required volume of air sample. During overnight shipping to the laboratory on February 3, 2023, three canisters from 1275 26th Avenue were compromised. Consequently, these residences were resampled on February 16 and 17, 2023. Two indoor air samples were collected at the residence at 1284 27th Avenue, three indoor air samples were collected at the residence at 1275 26th Avenue, and one outdoor ambient air sample was collected in the backyard of the residence at 1284 27th Avenue. Prior to deploying the canisters, a PID was used to screen the residences for localized sources of VOCs. The indoor air sampling was performed using the same methods as the primary sampling event described above.

Section 3.2.2 Soil Vapor Collection

On March 2, 3 and 4, 2022, 15 soil vapor samples (including two duplicate samples) were collected from the exterior dual-nested soil vapor probes. On February 1 and 2, 2023, 14 soil vapor samples (including two duplicate samples) were collected from the exterior dual-nested soil vapor probes. During the March 2022 and February 2023 sampling events, one sub-slab vapor sample was collected from the resident garage at 1271 26th Avenue. During the February 2023 soil vapor sampling event, soil vapor probe SVP-31B was not sampled due to the presence of water in the tubing from wet soil conditions. Soil vapor samples were collected using batch-certified 1-liter Summa™ canisters and flow regulators with Teflon® tubing. Shut-in and leak tests were conducted, and three purge volumes were removed at flow rates of 100 to 200 mL/min using a Summa™ canister or hand-held purge pump. Helium was used as the leak check compound. Soil vapor sampling did not occur within five days of a significant rain event. (A significant rain event is defined as 0.5-inch or greater of rainfall during a 24-hour period.)

Section 3.2.3 Laboratory Analyses

Following sample collection, the samples were transported under COC to Pace Analytical (Pace), a California Environmental Laboratory Accreditation Program (ELAP) certified laboratory, for analysis. Soil vapor samples were analyzed for:

- VOCs using United States Environmental Protection Agency (USEPA) Method TO-15
- Helium using American Society for Testing and Materials (ASTM) Method D-1946

Indoor and outdoor ambient air samples were analyzed for:

VOCs using USEPA Method TO-15 with Selective Ion Monitoring (SIM)

Indoor air and outdoor ambient air analytical results are included in *Table 1*. Soil vapor laboratory analytical results are presented in *Table 2*. Complete summaries of all detected analytes are provided in *Appendix D*.

Section 4.0 Analytical Results and Data Interpretation

The results of the sampling conducted at each of the offsite properties for both events are summarized in the following sections. Full analytical reports from Pace laboratory are included in *Appendix D*. Chemical concentrations over time for PCE in the 5 and 15 feet bgs samples are presented in *Figures 3 and 4*. Analytical results are presented in *Tables 1* through 3 and locations of the vapor pin and indoor air samples are shown in *Figures 5.1* through 5.6.

DTSC's default residential subslab/soil vapor screening level for PCE is 15 μ g/m³. For residential indoor air, DTSC's PCE screening level is 0.46 μ g/m³. Screening levels are explained in Section 5.0.

Section 4.1 Residence: 1271 26th Avenue

The soil vapor probes at 1271 26th Avenue were installed at approximately 5 feet bgs (SVP-31A) and 15 feet bgs (SVP-31B). In March 2022, PCE was detected in soil vapor at concentrations of 80.8 μ g/m³ at 5 feet bgs and 186 μ g/m³ at 15 feet bgs. PCE was detected at a concentration of 69.3 μ g/m³ from the sub-slab vapor pin (VP-1271-1) installed in the garage in March 2022. Additional detections of VOCs were reported in the soil vapor samples and are presented in the analytical laboratory reports in *Appendix D*.

In February 2023, PCE was detected in soil vapor at a concentration of 91.7 μ g/m³ at 5 feet bgs. During the purging of the 15-foot soil vapor probe, moisture was encountered and a sample could not be collected. PCE was detected at a concentration of 55.6 μ g/m³ from the sub-slab vapor pin (VP-1271-1) installed in the garage of the residence. Additional VOCs were detected in the sub-slab soil vapor pin sample and the results are presented in the analytical laboratory reports (*Appendix D*).

Indoor air samples were collected at 1271 26th Avenue on the ground and upper floor of the residence. Ground floor samples were collected in the kitchen and garage, and an upper floor sample was collected in the living room. In March 2022, PCE was detected at concentrations of 0.166 $\mu g/m^3$ in the garage (IAQ-1271-1-DUP), 0.221 $\mu g/m^3$ in the kitchen (IAQ-1271-2), and 0.180 $\mu g/m^3$ in the upstairs living room (IAQ-1271-3). In February 2023, PCE was detected at concentrations of 0.156 $\mu g/m^3$ in the primary sample (IAQ-1271-1) and 0.237 $\mu g/m^3$ in the field duplicate sample (IAQ-1271-1-DUP) from the garage, 0.264 $\mu g/m^3$ in the kitchen (IAQ-1271-2), and 0.151 $\mu g/m^3$ in the upstairs living room (IAQ-1271-3). Additional detections of VOCs were reported in the indoor air samples and are presented in the analytical laboratory report.

Outdoor ambient air samples (OAA-4) were collected at 1271 26th Avenue in the backyard during both the March 2022 and February 2023 events. PCE was not detected in the outdoor ambient air samples. Additional VOCs were detected in the outdoor ambient air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Section 4.2 Residence: 1275 26th Avenue

The soil vapor probes at 1275 26th Avenue were installed at approximately 5 feet bgs (SVP-32A) and 15 feet bgs (SVP-32B). In March 2022, PCE was detected in soil vapor at concentrations of

74 μ g/m³ at 5 feet bgs and 187 μ g/m³ at 15 feet bgs. In February 2023, PCE was detected in soil vapor at concentrations of 93 μ g/m³ at 5 feet bgs and 313 μ g/m³ at 15 feet bgs. Additional VOCs were detected in the soil vapor samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Indoor air samples were collected at 1275 26th Avenue on the ground and upper floor of the residence. The ground floor samples were collected in the bathroom and game room and the upper floor samples were collected in the living and dining room. In March 2022, PCE was detected at concentrations of 2.01 μ g/m³ in the bathroom (IAQ-1275-1) and 1.190 μ g/m³ in the upstairs living and dining room (IAQ-1275-2). In February 2023, PCE was detected at concentrations of 0.215 μ g/m³ in the bathroom (IAQ-1275-1) and 0.225 μ g/m³ in the game room (IAQ-1275-3). Due to issues encountered during transportation to the laboratory, the upstairs living and dining room sample (IAQ-1275-2) was not analyzed. Additional VOCs were detected in the indoor air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

The residence was resampled on February 16 and 17, 2023. Three indoor air samples were collected from the ground floor (the bathroom and game room) and upper floor (the living and dining room). PCE was detected at concentrations of $0.252 \, \mu g/m^3$ in the game room (IAQ-1275-3), $0.276 \, \mu g/m^3$ in the bathroom (IAQ-1275-1), and $1.11 \, \mu g/m^3$ in the upstairs living and dining room (IAQ-1275-2). Additional VOCs were detected in the indoor air samples and the results are presented in the analytical laboratory report (*Appendix D*).

Section 4.3 Residence: 1281 26th Avenue

The soil vapor probes at 1281 26th Avenue were installed at approximately 5 feet bgs (SVP-33A) and 15 feet bgs (SVP-33B). In March 2022, PCE was detected in soil vapor at concentrations of 172 μ g/m³ in the primary sample at 5 feet bgs, 180 μ g/m³ in the field duplicate sample at 5 feet bgs, and 360 μ g/m³ at 15 feet bgs. In February 2023, PCE was detected in soil vapor at concentrations of 553 μ g/m³ in the primary sample from 5 feet bgs, 481 μ g/m³ in the field duplicate sample at 5 feet bgs (SVP-33A-DUP), and 193 μ g/m³ at 15 feet bgs. Additional VOCs were detected in the soil vapor samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Indoor air samples were collected at 1281 26th Avenue on the ground and upper floors of the residence. A ground floor sample was collected in the living room and an upper floor sample was collected in the dining room. During the February 2023 event, an additional ground floor indoor air sample was collected in the bathroom. In March 2022, PCE was detected at concentrations of 1.23 μ g/m³ in the living room (IAQ-1281-1) and 0.324 μ g/m³ in the upstairs dining room (IAQ-1281-2). In February 2023, PCE was detected at concentrations of 0.957 μ g/m³ in the living room (IAQ-1281-1), 0.998 μ g/m³ in the bathroom (IAQ-1281-3), and 0.232 μ g/m³ in the upstairs dining room (IAQ-1281-2). Additional VOCs were detected in the indoor air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Section 4.4 Residence: 1276 27th Avenue

The soil vapor probes at 1276 27th Avenue were installed at approximately 5 feet bgs (SVP-28A) and 15 feet bgs (SVP-28B). In March 2022, PCE was detected in soil vapor at concentrations of 95.7 μ g/m³ at 5 feet bgs and 384 μ g/m³ at 15 feet bgs. In February 2023, PCE was detected in soil vapor at concentrations of 78.1 μ g/m³ at 5 feet bgs and 202 μ g/m³ at 15 feet bgs. Additional VOCs were detected in the soil vapor samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Indoor air samples were collected at 1276 27th Avenue on the ground and upper floors of the residence. A ground floor sample was collected in the living, laundry, and storage room and an upper floor sample was collected in the living room. In March 2022, PCE was detected at concentrations of 1.910 $\mu g/m^3$ in the living, laundry, and storage room (IAQ-1276-1) and 0.164 $\mu g/m^3$ in the upstairs living room (IAQ-1276-2). In February 2023, PCE was detected at concentrations of 0.221 $\mu g/m^3$ in the living, laundry, and storage room (IAQ-1276-1) and 0.183 $\mu g/m^3$ in the upstairs living room (IAQ-1276-2). Additional VOCs were detected in the indoor air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

In February 2023, an outdoor ambient air sample (OAA-6) was collected at 1276 27th Avenue in the backyard. PCE was not detected in the outdoor ambient air sample. Additional VOCs were detected in the outdoor ambient air sample and the results are presented in the analytical laboratory report (*Appendix D*).

Section 4.5 Residence: 1280 27th Avenue

The soil vapor probes at 1280 27th Avenue were installed at approximately 5 feet bgs (SVP-29A) and 15 feet bgs (SVP-29B). In March 2023, PCE was detected in soil vapor at concentrations of 115 μ g/m³ at 5 feet bgs and 57.7 μ g/m³ at 15 feet bgs. In February 2023, PCE was detected in soil vapor at concentrations of 88.3 μ g/m³ at 5 feet bgs and 212 μ g/m³ at 15 feet bgs. Additional VOCs were detected in the soil vapor samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Indoor air samples were collected at 1280 27th Avenue on the ground and upper floors of the residence. A ground floor sample was collected in the front bedroom and an upper floor sample was collected in the living room. In March 2022, PCE was detected at concentrations of 0.406 μ g/m³ in the front bedroom (IAQ-1280-1) and 0.346 μ g/m³ in the upstairs living room (IAQ-1280-2). In February 2023, PCE was detected at concentrations of 0.54 μ g/m³ in the front bedroom (IAQ-1280-1) and 0.346 μ g/m³ in the upstairs living room (IAQ-1280-2). Additional VOCs were detected in the indoor air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Section 4.6 Residence: 1284 27th Avenue

The soil vapor probes at 1284 27th Avenue were installed at approximately 5 feet bgs (SVP-30A) and 15 feet bgs (SVP-30B). In March 2022, PCE was detected in soil vapor at concentrations of 90.3 μ g/m³ in the primary sample at 5 feet bgs, 131 μ g/m³ in the field duplicate sample from 5 feet bgs, and 202 μ g/m³ at 15 feet bgs. In February 2023, PCE was detected in soil vapor at

concentrations of 88.3 μ g/m³ in the primary sample at 5 feet bgs, 96.4 μ g/m³ in the field duplicate from 5 feet bgs, and 308 μ g/m³ at 15 feet bgs. Additional detections of VOCs were reported in the soil vapor samples and are presented in the analytical laboratory reports (*Appendix D*).

Indoor air samples were collected at 1284 27th Avenue on the ground and upper floor of the residence. A ground floor sample was collected in the kitchen and an upper floor sample was collected in the living room. An additional ground floor sample was collected in the garage during the February 2023 event. Due to issues with the laboratory provided Summa™ canister/flow regulator, a sample could not be collected in the upstairs living room (IAQ-1284-2) during the February 2023 event. In March 2022, PCE was detected at concentrations of 0.978 μg/m³ in the kitchen (IAQ-1284-1) and 0.520 μg/m³ in the upstairs living room (IAQ-1284-2). In February 2023, PCE was detected at concentrations of 0.422 μg/m³ in the garage (IAQ-1284-3) and 0.553 μg/m³ in the kitchen (IAQ-1284-1). Additional VOCs were detected in the indoor air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

The residence was resampled on February 16 and 17, 2023. Indoor air samples were collected from the ground floor (kitchen) and upper floor (living room). PCE was detected at concentrations of 0.774 μ g/m³ in the kitchen (IAQ-1284-1) and 0.439 μ g/m³ in the living room (IAQ-1284-2). Additional VOCs were reported in the indoor air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Outdoor ambient air samples (OAA-5) were collected at 1284 27th Avenue in the backyard during the initial sampling events and when indoor air samples were resampled. In March 2022, PCE was detected at a concentration of $0.519 \, \mu g/m^3$ but was not detected during both February 2023 events. Additional VOCs were detected in the outdoor ambient air samples and the results are presented in the analytical laboratory reports (*Appendix D*).

Section 4.7 Helium Results

During the March 2022 sampling event, the leak check compound helium was detected in 13 of the 15 soil vapor samples at concentrations up to 0.628 percent (%). For all soil vapor samples collected during the March 2022 sampling event, the detected helium leak ratio was within the acceptable limits (i.e., less than 5% of the concentration measured in the shroud during the leak check test [DTSC, 2015]). Based on these results, the soil vapor results are considered representative.

The leak check compound helium was detected in 11 of the 14 soil vapor samples at concentrations up to 1.34% during the February 2023 sampling event. For all soil vapor samples (except SVP-28B) collected in February 2023, the detected helium leak ratio was within the acceptable limits (i.e., less than 5% of the concentration measured in the shroud during the leak check test). In the soil vapor sample collected from probe SVP-28B, the helium leak ratio was calculated to be 6.71%, which exceeds the 5% recommended limit (DTSC, 2015), which suggests that there may have been a leak in the sampling train connecting the probe to the Summa canister, which could have allowed the inclusion of outside air resulting in a low bias for the VOC sample results.

Helium detections and the calculated leak ratio for each soil vapor probe is provided in *Table 3*.

Section 5.0 Discussion of Results

DTSC's Human and Ecological Risk Office (HERO) screening levels represent the concentrations at which DTSC further investigates potential risk to human health. Screening levels are calculated concentrations that use default, upper-bound assumptions of exposure and toxicity to provide confidence that adverse health effects are unlikely to be observed at that concentration. The presence of chemicals at concentrations greater than their respective screening levels does not necessarily indicate that adverse impacts are occurring or will occur but does suggest that further evaluation of potential human health risk may be warranted.

Screening levels used to evaluate the analytical results included the following:

- DTSC-modified residential screening levels (DTSC SLs) for ambient air listed in DTSC's HERO Human Health Risk Assessment (HHRA) Note 3, where available (DTSC, 2022b); or.
- If DTSC SLs are not available, USEPA residential regional screening levels (RSLs) for ambient air (USEPA, 2022).
- For evaluation of soil vapor data, DTSC SLs and RSLs for ambient air were then adjusted
 to soil vapor screening levels using a default attenuation factor for existing residential
 buildings, as listed in USEPA's Technical Guide for Assessing and Mitigating the Vapor
 Intrusion Pathway from Subsurface Vapor Sources to Indoor Air (attenuation factor of 0.03;
 USEPA, 2015).

The DTSC SL for PCE is $0.46 \,\mu\text{g/m}^3$, which is based on one in one million lifetime cancer risk (1x10⁻⁶). Using the procedures outlined by USEPA (2015), the residential soil vapor screening level for PCE was calculated to be 15 $\,\mu\text{g/m}^3$, using a 0.03 attenuation factor (DTSC, 2023).

Section 5.1 Soil Vapor

Soil vapor analytical results are discussed by geographical area below. PCE concentrations north of the Site for the soil vapor probes installed at depths of 5 feet bgs (shallow) and 15 feet bgs (deep) are presented in *Figures 6 and 7* to illustrate the typical lateral extent and distribution of these compounds in the soil vapor at deep and shallow depths, respectively. The data presented in Figures 6 and 7 provide soil vapor data collected in February 2023 from soil vapor wells adjacent to the six residences (*Table 2*). It should be noted that investigation south of Irving Street is ongoing and DTSC expects that our understanding of the concentrations around the former Albrite Cleaners site at 2511 Irving Street may change with additional investigation."

Soil vapor samples were collected in the front of six residential properties located north of the Site, three on 26th Avenue and three on 27th Avenue. PCE concentrations on 26th Avenue and 27th Avenue were observed to generally increase with depth. Soil vapor concentrations are more stable over time at the 5-foot horizon (the horizon which most informs evaluation of vapor intrusion to these slab-on grade residences) than at greater depth, as shown in *Figures 4 and 5*. During the March 2022 and February 2023 sampling events, PCE concentrations reported in soil vapor at each of the six residences exceeded the DTSC SL of 15 µg/m³.

Sub-slab soil vapor samples were collected during both sampling events at 1271 26th Avenue, located furthest north from the Site. PCE concentrations reported in the sub-slab soil vapor samples exceeded the DTSC SL (15 μ g/m³) during both sampling events.

Section 5.2 Indoor Air

Indoor air results are presented in *Table 1* for PCE. Indoor air samples were collected in the six residential properties north of the Site during sampling events conducted in March 2022 and February 2023. Data provided in *Figures 3, 4, 6 and 7* and *Tables 1* and *4* demonstrate attenuation of PCE concentrations between soil vapor at 15 and 5 feet bgs and the indoor air. During the March 2022 sampling event, PCE concentrations exceeded the indoor air DTSC SL (0.46 µg/m³) in the ground floor samples collected from 1275 26th Avenue, 1281 26th Avenue, 1276 27th Avenue, and 1284 27th Avenue (*Table 1*). Additionally, PCE concentrations exceeded the indoor air DTSC SL in the upper floor samples collected at 1275 26th Avenue and 1284 27th Avenue in March 2022.

During the February 2023 sampling event, PCE concentrations exceeded the indoor air DTSC SL in the ground floor samples collected at 1281 26th Avenue, 1280 27th Avenue, and 1284 27th Avenue (*Table 1*). Additionally, PCE concentrations exceeded the indoor air DTSC SL in samples collected from the upper floor at 1275 26th Avenue and 1284 27th Avenue during the February 2023 sampling event.

The mean of the indoor air (upper and ground floors) PCE concentrations from March 2022 and February 2023 were screened against the indoor air DTSC SL for PCE. March 2022 and February 2023 are considered wet season events during which indoor air samples were collected with minimal passive ventilation in the homes so as to not underestimate potential vapor intrusion risk. The average concentrations of the wet season samples are a reasonable representation of exposure to assess a lifetime potential risk. The mean indoor air PCE concentrations are presented in *Table 4*. Mean indoor air concentrations for the six residences ranged from 0.204 $\mu g/m^3$ to 1.147 $\mu g/m^3$. The mean of 1.147 $\mu g/m^3$ was from the residence with consistent elevated concentrations on the upper floor and one elevated concentration on the ground floor. Vapor intrusion more typically presents with elevated concentrations on the ground floor and declining concentrations on the upper floor(s). However, vapor intrusion cannot be ruled out at this location.

The mean PCE concentrations were used to estimate vapor intrusion risks (*Table 4*). Risk was assessed by dividing the mean indoor air concentrations of PCE by the DTSC residential screening level for the cancer endpoint (0.46 μ g/m³) and multiplying by 1x10-6. Using the screening level that is based on default, upper-bound assumptions of exposure and toxicity, the maximum estimated inhalation risk was 2x10-6 which is at the low end of the risk management range of 1x10-6 to 1x10-4 cited in the National Contingency Plan (1990) and incorporated in Chapter 6.8 Section 25356.1.5(a)(1) of the California Health and Safety Code (DTSC, 2022a).

Section 5.3 Outdoor Ambient Air

Ambient air in California can contain numerous volatile chemicals. Detections of VOCs in ambient air generally will not influence soil vapor results, but they may contribute to concentrations

measured in indoor air samples. Ambient air detections may indicate the presence of an external source unrelated to vapor intrusion (DTSC, 2011). For this Offsite Investigation the ambient air samples were collected north of the Site in the backyards of three residences. PCE was detected above DTSC's residential screening level in one ambient air sample in March 2022. PCE was also detected in ambient air samples collected at the residences during 2021 sampling at the Site.

Section 6.0 Conclusions

Residential indoor air samples were collected from the six residential properties located north of the Site during the March 2022 and February 2023 sampling events. Soil vapor and residential indoor air samples were collected to determine the nature and extent of PCE in soil vapor and through vapor intrusion, and to evaluate residence-specific, empirical attenuation factors. The properties evaluated in the assessment included six residential properties located to the north of the Site along 26th Avenue and 27th Avenue. Vapor probes were installed in front of each residential property. Air samples were collected inside each residence to further assess potential risks from vapor intrusion.

The assessment resulted in the following findings:

- Soil vapor concentrations of PCE exceeded the DTSC SL at the six residences during both sampling events. Soil vapor concentrations are observed to generally increase 2- to 4-fold with greater depth, based on the 5- and 15-foot samples. The PCE concentrations in soil vapor, particularly at the 5-foot-bgs horizon, may warrant additional monitoring.
- PCE was detected in all indoor air samples at concentrations ranging between 0.164 and 2.01 μg/m³ during the March 2022 sampling event.
- PCE was detected in all indoor air samples at concentrations ranging from 0.151 to 1.11 µg/m³ during the February 2023 sampling event.
- PCE concentrations in indoor air exceeded the DTSC SL of 0.46 μg/m³ at 1275 26th Avenue, 1281 26th Avenue, 1276 27th Avenue, and 1284 27th Avenue during the March 2022 sampling event and at 1275 26th Avenue, 1281 26th Avenue, 1280 27th Avenue, and 1284 27th Avenue during the February 2023 sampling event.
- PCE was not detected in outdoor ambient air samples, except for the outdoor ambient air sample collected at 1284 27th Avenue (0.519 μg/m³) during the March 2022 sampling event. PCE was detected in outdoor ambient air during sampling in 2021.

Several factors can influence indoor air sample results. Contaminant vapor may potentially intrude into a building via cracks in the building foundation and the associated sewer line. However, the same air contaminants may also be found in outdoor air and in consumer products stored and/or used indoors. This is why it is important to remove the influence of outdoor air and consumer products containing the contaminant (in this case PCE) prior to sampling, so that there is increased certainty that what is measured in the indoor air sample is from vapor intrusion. When the influence of outdoor air (i.e., ventilation) is minimized ahead of sampling, the results can be interpreted to be a high-end measurement of potential inhalation risk, given ventilation is often

conducive to lowering indoor VOC concentrations. These high-end measurements resulted in the conservative, maximum estimated risk of 2x10⁻⁶ (*Table 4*). This risk is at the low-end of the risk management range, slightly greater than the point of departure that defines *de minimis* risk. The calculated risk is expected to be an overestimate of true life-time risks, due to the factors described above.

Section 7.0 Recommendations

The results of the indoor air and soil vapor sampling indicate that vapor intrusion may be occurring at the six residential properties adjacent to the Site (property formerly owned by TPCU). However, the magnitude of the concentrations and resulting risks are low (maximum estimated lifetime risk of 2x10⁻⁶). Out of an abundance of caution and in response to community concerns, DTSC recommends additional soil gas sampling at the existing wells on 26th and 27th Avenues during the dry season. Soil gas sampling should be conducted after the 2550 Irving Affordable Housing building is complete and soil gas concentrations equilibrate. In addition, DTSC recommends concurrent indoor air sampling at the two residences which showed the greatest variability in empirical attenuation factors (1275 26th Avenue and 1276 27th Avenue). DTSC will continue overseeing investigation and mitigation activities at 2550 Irving Street, the Former Albrite Cleaners site, 2513 Irving Street, and 1300 26th Avenue.

Section 8.0 References

AllWest Environment, Inc. (AllWest), 2019. Subsurface Investigation Report. October 2019.

AllWest, 2020. Soil Vapor Investigation Report. November 2020.

AllWest, 2022. Offsite Indoor Air Quality and Soil Vapor Monitoring Report. January 2022.

California Department of Toxic Substances Control (DTSC), 2011. Final Guidance for the Evaluation and Mitigation of Subsurface Vapor Intrusion to Indoor Air. October 2011.

DTSC, 2015. Advisory – Active Soil Gas Investigations. California Environmental Protection Agency: Department of Toxic Substances Control, Los Angeles Regional Water Quality Control Board, San Francisco Regional Water Quality Control Board. July 2015.

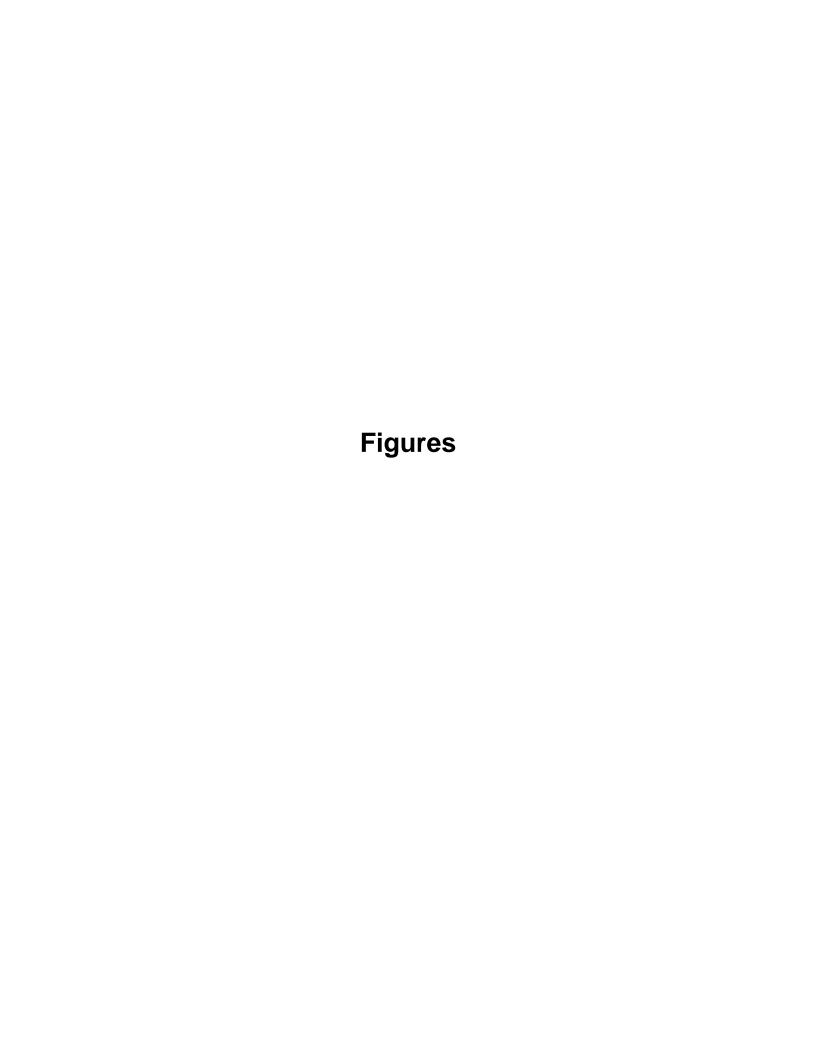
DTSC, 2022a. 2021 California Hazardous Waste and Hazardous Substances Code Excerpts, Chapter 6.8 Section 25356.1.5(a)(1). January 2022.

DTSC, 2022b. Human and Ecological Risk Office Human Health Risk Assessment Note 3, DTSC Modified Screening Levels (DTSC-SLs). June 2020. Revised May 2022.

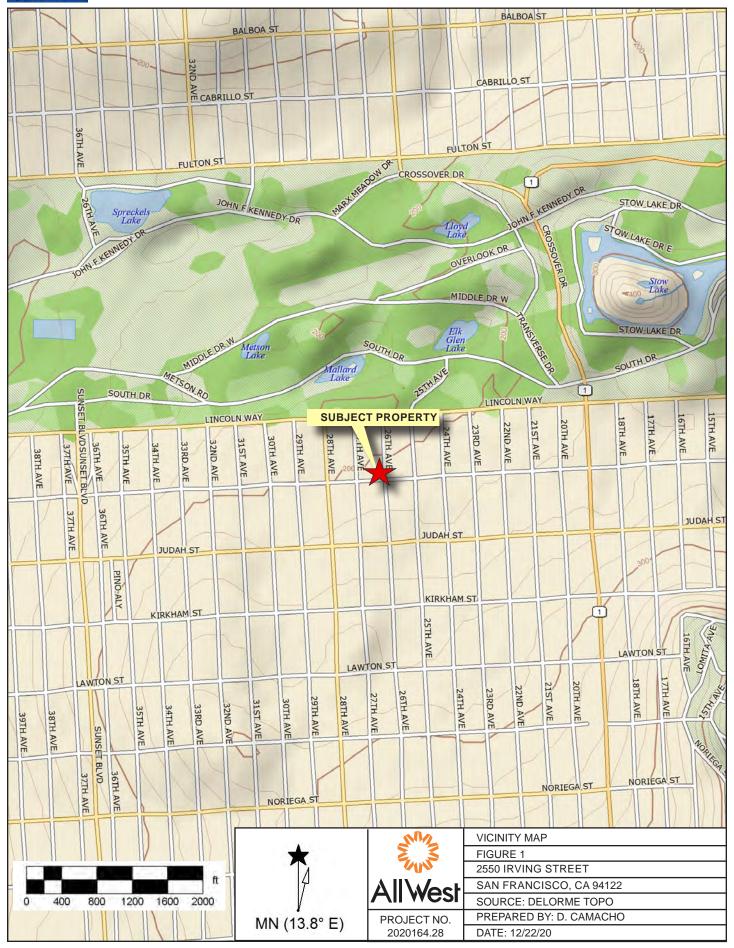
DTSC, 2023. Supplemental Guidance: Screening and Evaluating Vapor Intrusion. February 2023.

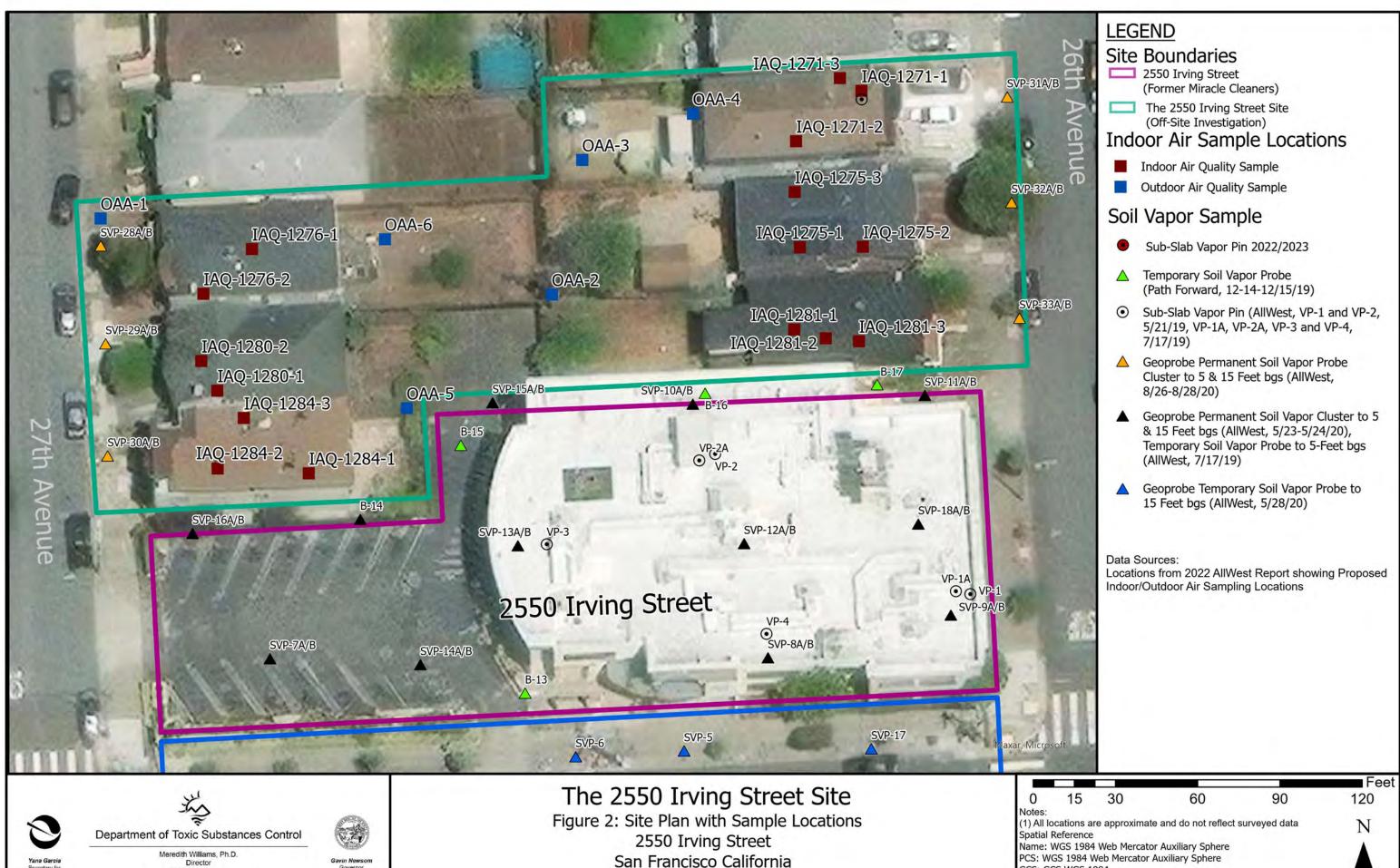
National Archives, 1990. Code of Federal Regulations, Subpart E—Hazardous Substance Response, 40 CFR 300.430 (e)(2)(i)(a)(2). March 1990

State of California Department of Water Resources (DWR), 2003. California's Groundwater, Bulletin 118. Updated 2003.


Path Forward Partners, Inc., 2021. Site Assessment Plan and Report of Findings. February 2021.

Phillips, S.P., Hamlin, S.N., and Yates, E.B. 1993. Geohydrology, Water Quality, and Estimation of Ground-water Recharge in San Francisco, California, 1987-92. U.S. Geological Survey Water-Resources Investigations Report 93-4019. Prepared in cooperation with the San Francisco Water Department. 69 p. January 1993.


State of California San Francisco Regional Water Quality Control Board, San Francisco Bay Region (SFRWQCB) 2017. San Francisco Bay Basin (Region 2) Water Quality Control Plan (Basin Plan). May 2017.


United States Environmental Protection Agency (USEPA), 2015. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2-154. June 2015.

USEPA, 2022. Regional Screening Levels. November 2022.

700 Heinz Avenue Berkeley, California 94710-2721

PROJECTS: 202402 Drawn By: AW Peer Review TM

GCS: GCS WGS 1984

Projection: Mercator Auxiliary Sphere

Figure 3. PCE Trends in Soil Vapor, 5 Feet Below Ground Surface
The 2550 Irving Street Site
San Francisco, California

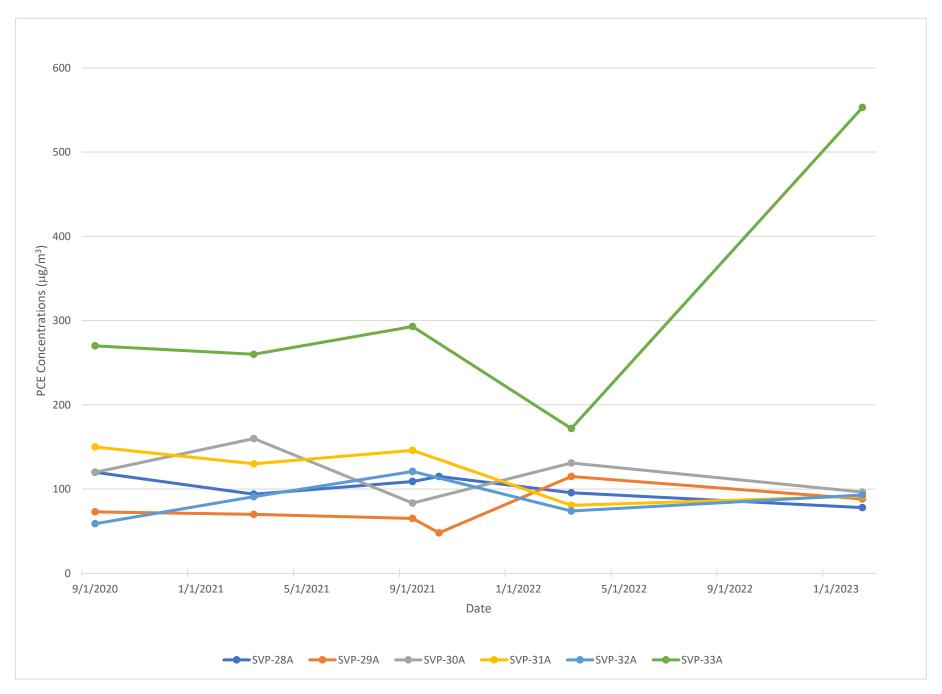
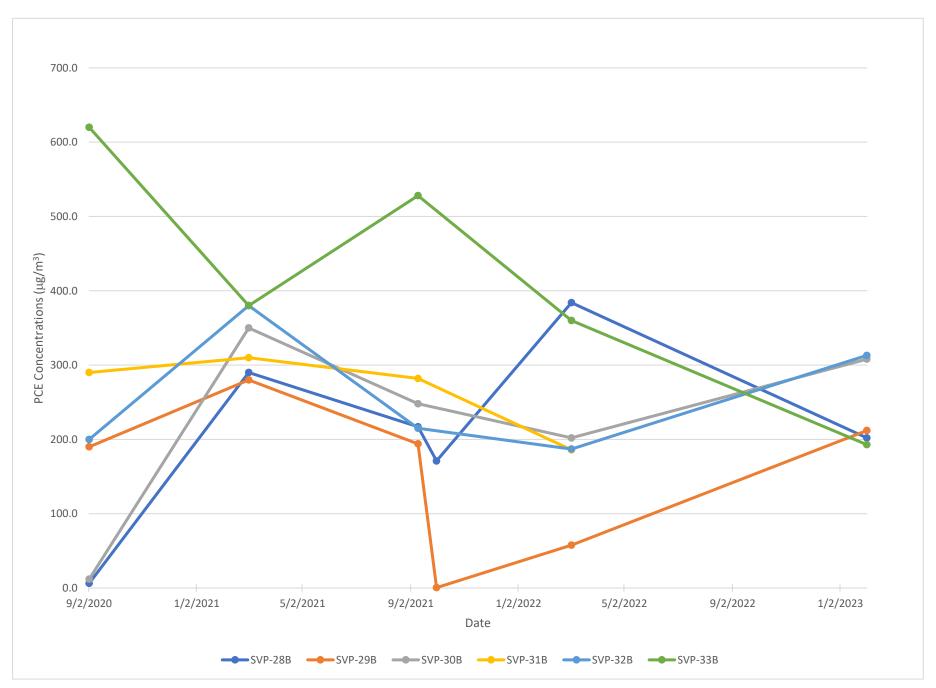
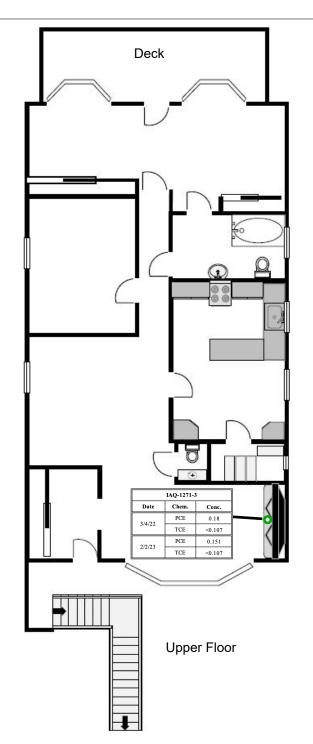
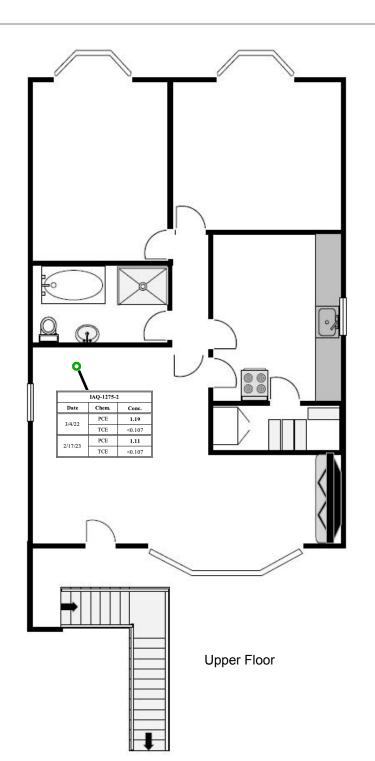
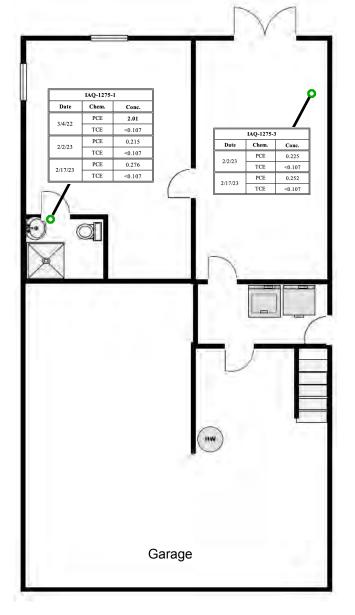




Figure 4. PCE Trends in Soil Vapor, 15 Feet Below Ground Surface
The 2550 Irving Street Site
San Francisco, California

	OAA-4			- 0
Date	Chem.	Conc.		OAA Exterior Sample
3/4/22	PCE	<0.136		
3/4/22	TCE	< 0.107		
2/2/23	PCE	< 0.136		
212123	TCE	<0.107		Y
	Date 3/4/22 - 2/2/23 -	AQ-1271-2 Chem. PCE TCE PCE	Conc. 0.221 <0.107 0.264	
	2/2/23	TCE	<0.107	
-				
		VP-1271-1		
	Date	Chem.	Conc.	
	3/4/2022	PCE	69.3	
	3/4/2022	TCE	1.15	Garage
	2/2/2023	PCE	55.6	•
		TCE	<0.107	
Л.				
				IAQ-1271-1
				Date Chem. Conc. PCE 0.176 (0.166)
				3/4/22 TCE <0.107
				PCE 0.156 (0.237)
		ſ	7	TCE <0.107
-		1		
FIG.	9	1	1/	
1		97	风	
100	3			
6	2			
E	2			
E	,		= -	
.6	G	round	d Floor	


- Indoor Air Sample
- Vapor Pin Sample


NOTES

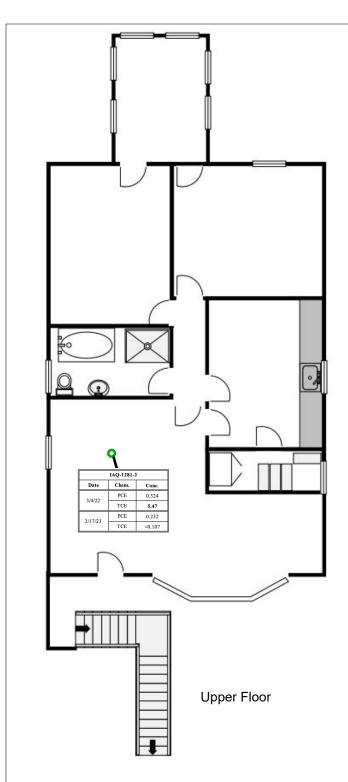
- 1. Indoor air sampling locations are approximate.
- 2. Building dimensions and floor plan layouts are approximate.
- All values are in units of micrograms per cubic meter (ug/m³).
- The residential air screening levels for tetrachloroethylene (PCE) and trichloroethylene (TCE) are 0.46 ug/m³ and 0.48 ug/m³, respectively.
- 5. All bold results indicate an exceedance of the screening level for PCE and TCE.
- Chemical (Chem.) concentration (Conc.) that were non-detect are reported as "<" followed by the laboratory's reported detection limit.
- 7. Concentrations in parenthesis = Duplicates.

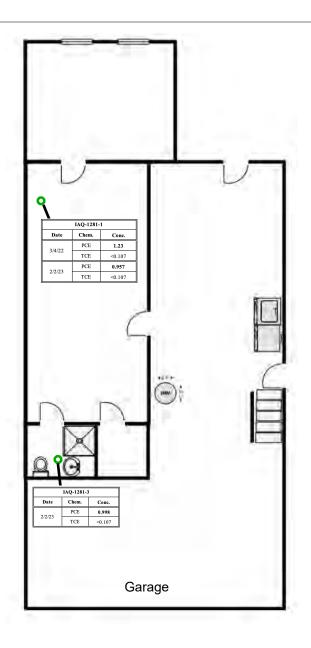
1271 26th Avenue Indoor Air PCE/TCE Sampling Results March 2022/February 2023 San Francisco, CA <u>Figure</u>

5.1

Ground Floor

LEGEND


Indoor Air Sample


NOTES

- 1. Indoor air sampling locations are approximate.
- 2. Building dimensions and floor plan layouts are approximate.
- 3. All values are in units of ug/m³.
- The residential air screening levels for tetrachloroethylene (PCE) and trichloroethylene (TCE) are 0.46 ug/m³ and 0.48 ug/m³, respectively.
- 5. All bold results indicate an exceedance of screening level for PCE and TCE.
- Chemical (Chem.) concentration (Conc.) that were non-detect are reported as "<" followed by the laboratory's reported detection limit.

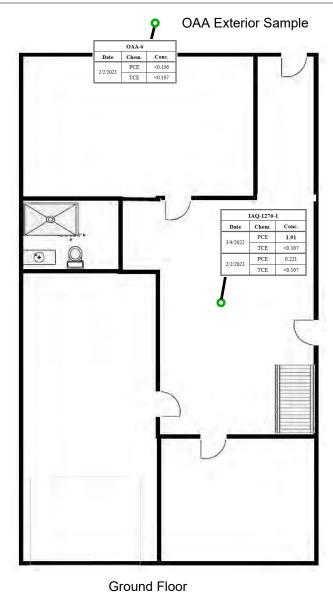
1275 26th Avenue Indoor Air PCE/TCE Sampling Results March 2022/February 2023 San Francisco, CA

5 2

Ground Floor

Indoor Air Sample

NOTES


- 1. Indoor air sampling locations are approximate.
- Building dimensions and floor plan layouts are approximate.
- 3. All values are in units of micrograms per cubic meter (ug/m³).
- The residential air screening levels for tetrachloroethylene (PCE) and trichloroethylene (TCE) are 0.46 ug/m³ and 0.48 ug/m³, respectively.
- 5. All bold results indicate an exceedance of screening level for PCE and TCE.
- Chemical (Chem.) concentration (Conc.) that were non-detect are reported as "<" followed by the laboratory's reported detection limit.

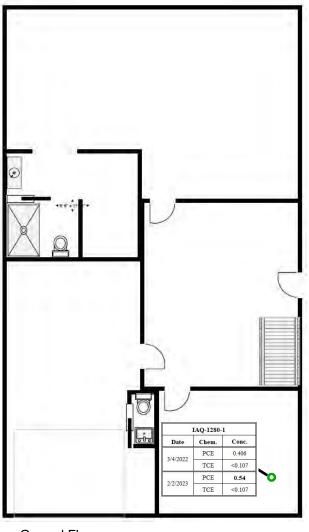
1281 26th Avenue Indoor Air PCE/TCE Sampling Results March 2022/February 2023 San Francisco, CA

<u>Figure</u>

5.3

Indoor Air Sample

NOTES


- 1. Indoor air sampling locations are approximate.
- 2. Building dimensions and floor plan layouts are approximate.
- 3. All values are in units of micrograms per cubic meter (ug/m³).
- the residential air screening levels for tetrachloroethylene (PCE) and trichloroethylene (TCE) are 0.46 ug/m³ and 0.48 ug/m³, respectively.
- All bold results indicate an exceedance of the screening level for PCE and TCE.
- Chemical (Chem.) concentration (Conc.) that were non-detect are reported as "<" followed by the laboratory's reported detection limit.

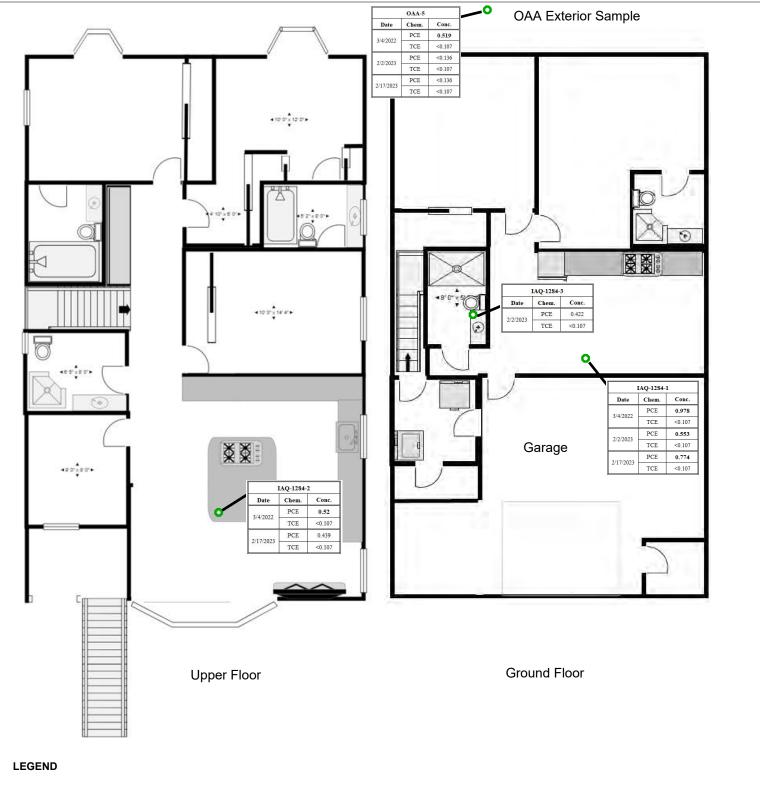
1276 27th Avenue Indoor Air PCE/TCE Sampling Results March 2022/February 2023 San Francisco, CA **~**

Figure

5.4

Ground Floor

Indoor Air Sample

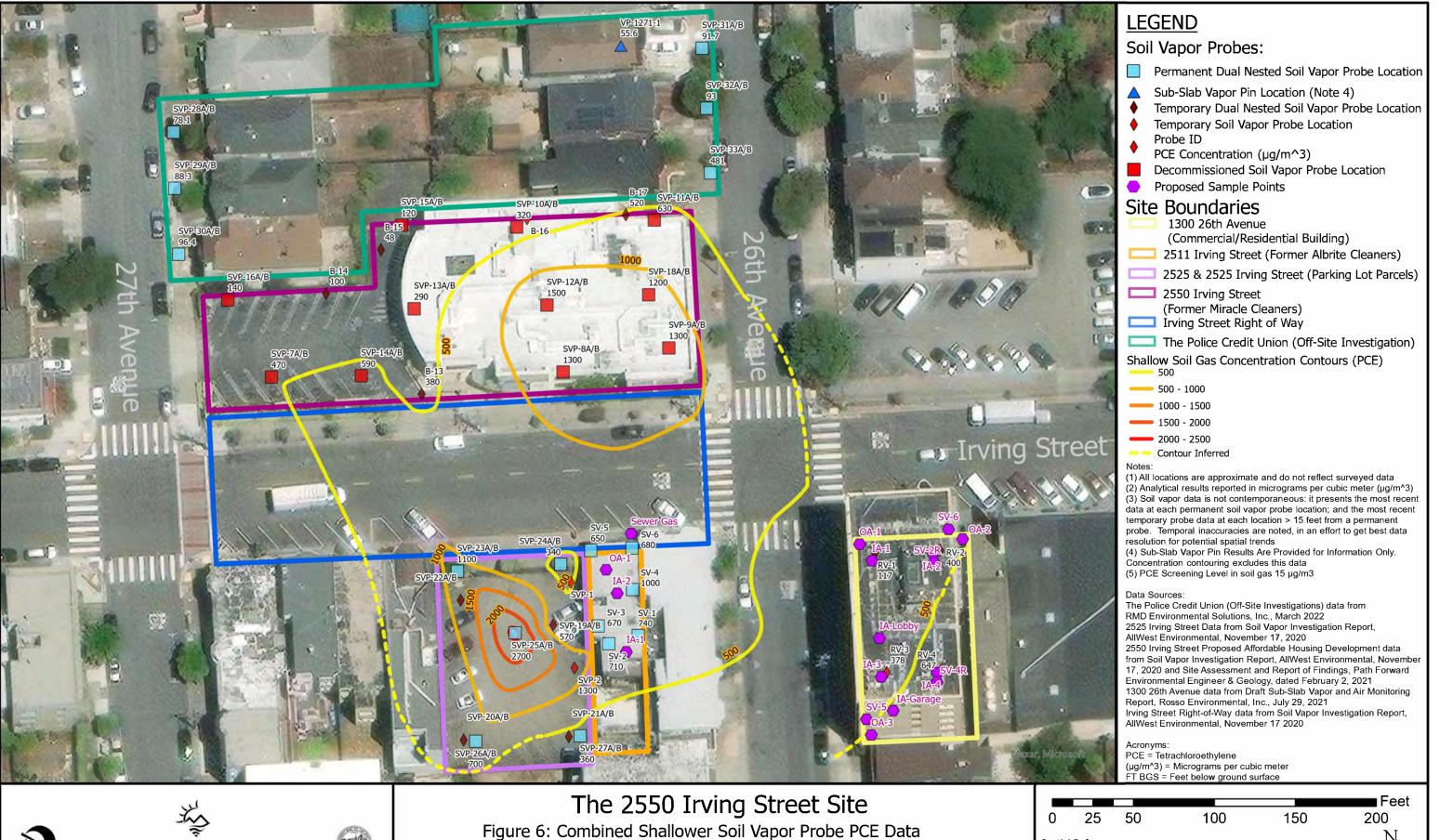

NOTES

- 1. Indoor air sampling locations are approximate.
- Building dimensions and floor plan layouts are approximate.
- 3. All values are in unit of micrograms per cubic meter (ug/m³).
- The residential air screening levels for tetrachloroethylene (PCE) and trichloroethylene (TCE) are 0.46 ug/m³ and 0.48 ug/m³, respectively.
- All bold results indicate an exceedance of the screening level for PCE and TCE.
- Chemical (Chem.) concentration (Conc.) that were non-detect are reported as "<" followed by the laboratory's reported detection limit.

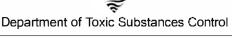
1280 27th Avenue Indoor Air PCE/TCE Sampling Results March 2022/February 2023 San Francisco, CA

Figure

Indoor Air Sample


NOTES

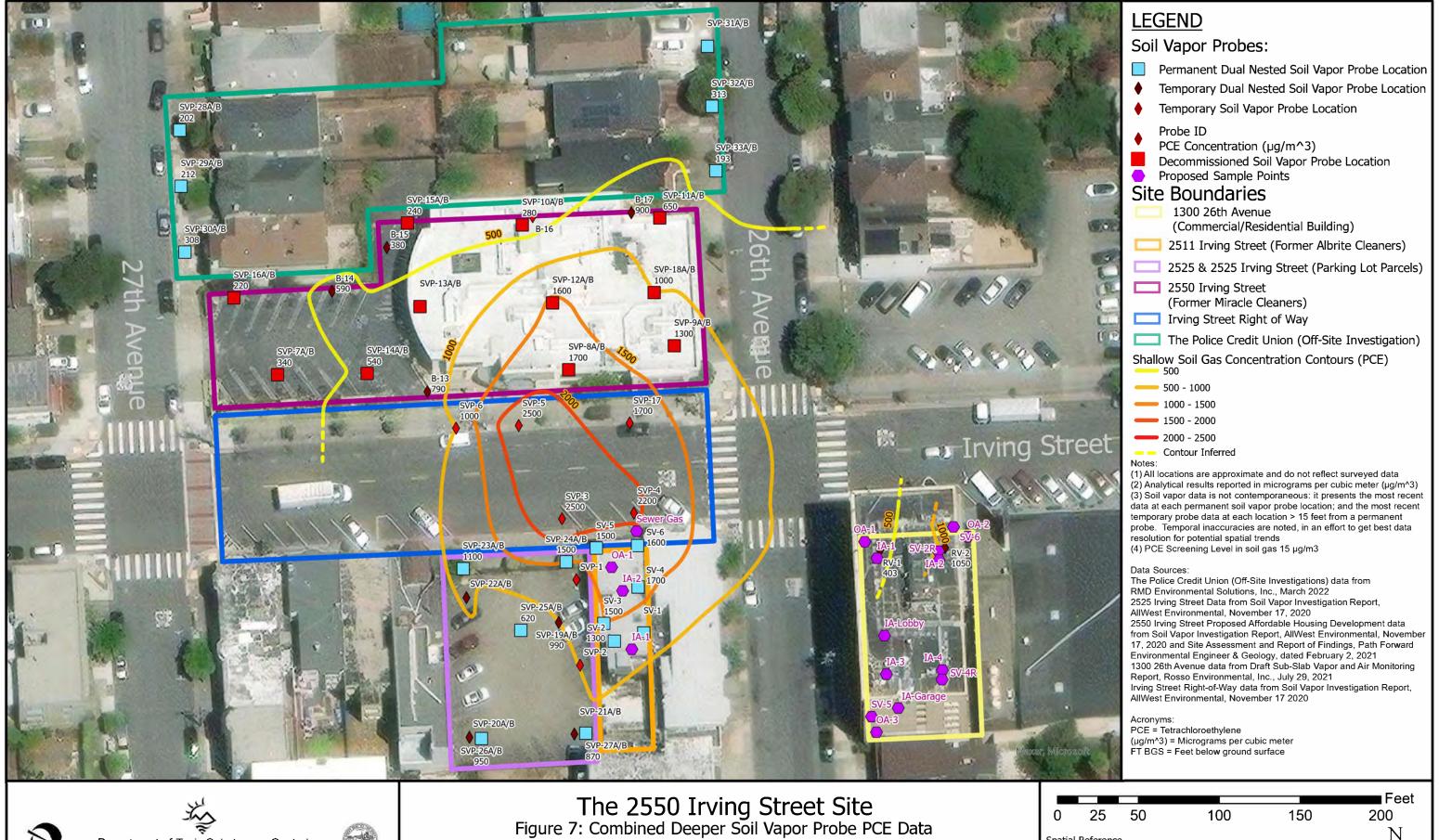
- 1. Indoor air sampling locations are approximate.
- Building dimensions and floor plan layouts are approximate.
- 3. All values are in units of micrograms per cubic meter (ug/m³).
- The residential air screening levels for tetrachloroethylene (PCE) and trichloroethylene (TCE) are 0.46 ug/m³ and 0.48 ug/m³, respectively.
- All bold results indicate an exceedance of the screening level for PCE and TCE.
- Chemical (Chem.) concentration (Conc.) that were non-detect are reported as "<" followed by the laboratory's reported detection limit.


1284 27th Avenue Indoor Air PCE/TCE Sampling Results March 2022/February 2023 San Francisco, CA

<u>Figure</u>

5.6

Meredith Williams, Ph.D. Director 700 Heinz Avenue Berkeley, California 94710-2721


Figure 6: Combined Shallower Soil Vapor Probe PCE Data 2550 Irving Street San Francisco California

San Francisco California
PROJECTS: 202402
Drawn By: AW Peer Review TM

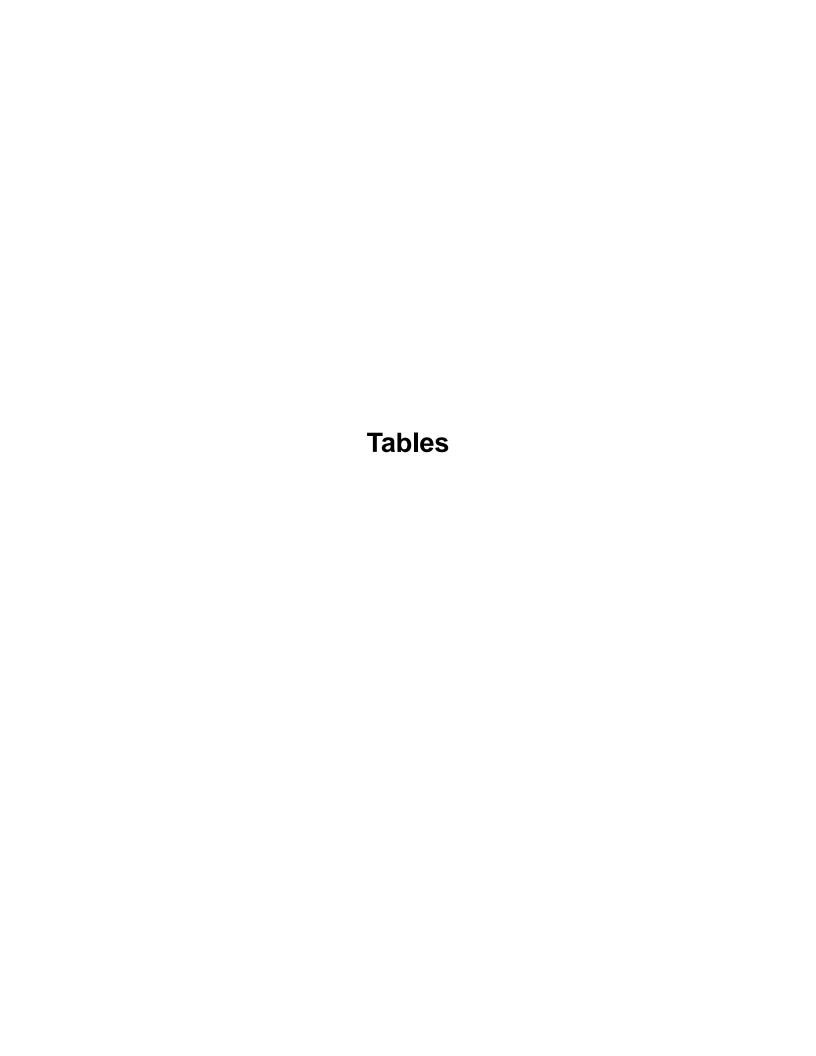
Spatial Reference Name: WGS 1984 Web Mercator Auxiliary Sphere PCS: WGS 1984 Web Mercator Auxiliary Sphere

GCS: GCS WGS 1984
Datum: WGS 1984
Projection: Mercator Auxiliary Sphere

Meredith Williams, Ph.D. Director 700 Heinz Avenue Berkeley, California 94710-2721

2550 Irving Street

San Francisco California PROJECTS: 202402 Drawn By: AW Peer Review TM


Spatial Reference

Name: WGS 1984 Web Mercator Auxiliary Sphere PCS: WGS 1984 Web Mercator Auxiliary Sphere GCS: GCS WGS 1984

Datum: WGS 1984

Projection: Mercator Auxiliary Sphere

Table 1. SUMMARY OF INDOOR AIR AND OUTDOOR AMBIENT AIR ANALYTICAL RESULTS

The 2550 Irving Street Site San Francisco, California Page 1 of 3

		Analyte:	PCE	TCE				
	Res	sidential Air Screening Level:	0.46	0.48*				
Sample ID	Date	Location	μg/m³		Comments			
	1271 26th Avenue							
IAQ-1271-1	9/14/2021		29.2	164	Passive ventilation sample. Consumer products were not removed prior to sampling.			
	3/4/2022	Ground Floor - Garage	0.176	ND (<0.107)				
IAQ-1271-1-DUP	3/4/2022		0.166	ND (<0.107)				
IAQ-1271-1	2/2/2023		0.156	ND (<0.107)				
IAQ-1271-1-DUP	2/2/2023		0.237	ND (<0.107)				
IAQ-1271-2	9/14/2021	Carried Floor White	3.08	0.0718 J	Passive ventilation sample. Consumer products were not removed prior to sampling.			
IAQ-1271-2 - DUP		Ground Floor - Kitchen	3.08	ND (<0.107)				
140 1271 2	3/4/2022	1	0.221	ND (<0.107)				
IAQ-1271-2	2/2/2023		0.264	ND (<0.107)				
IAQ-1271-3	9/14/2021	Upper Floor - Living	8.89	ND (<1.07)	Passive ventilation sample. Consumer products were not removed prior to sampling.			
	3/4/2022	Room	0.18	ND (<0.107)				
	2/2/2023		0.151	ND (<0.107)				
OAA-4	3/4/2022	Backyard	ND (<0.136)	ND (<0.107)				
UAA-4	2/2/2023	Баскуати	ND (<0.136)	ND (<0.107)				
IAQ-10	9/14/2021	Ground Floor - Living Room	1.25	0.0697 J	Passive ventilation sample. Consumer products were not removed prior to sampling.			
IAQ-12	9/14/2021	Upper Floor - Main Bedroom	4.1	ND (<1.07)	Passive ventilation sample. Consumer products were not removed prior to sampling.			
		12	275 26th Avenu	ie				
	9/9/2021		0.119 J	ND (<0.107)	Passive ventilation sample. Consumer products were not removed prior to sampling.			
IAQ-1275-1	3/4/2022	Ground Floor - Bathroom	2.01	ND (<0.107)	, ,			
	2/2/2023	1	0.215	ND (<0.107)				
	2/17/2023	1	0.276		Resampled location			
IAO 1275 2	9/9/2021	Upper Floor - Living and	0.699	0.0528 J	Passive ventilation sample. Consumer products were not removed prior to sampling.			
IAQ-1275-2	3/4/2022	Dining Room	1.19	ND (<0.107)				
	2/2/2023 ¹		NA	NA				
	2/17/2023]	1.11	ND (<0.107)	Resampled location			
IAQ-1275-3	9/9/2021	Ground Floor - Game	0.0937 J	ND (<0.107)	Passive ventilation sample. Consumer products were not removed prior to sampling.			
	2/2/2023	Room	0.225	ND (<0.107)				
	2/17/2023	1	0.252	ND (<0.107)	Resampled location			

Table 1. SUMMARY OF INDOOR AIR AND OUTDOOR AMBIENT AIR ANALYTICAL RESULTS

The 2550 Irving Street Site San Francisco, California Page 2 of 3

		Analyte:	PCE	TCE	
	Res	sidential Air Screening Level:	0.46	0.48*	
Sample ID	Date	Location	μg,	/m³	Comments
		12	281 26th Avenu	ıe	
IAQ-1281-1	9/7/2021	Ground Floor - Living Room	0.774	0.3	Passive ventilation sample. Consumer products were not removed prior to sampling.
	3/4/2022	0 11	1.23	ND (<0.107)	p 6
	2/2/2023		0.957	ND (<0.107)	
IAQ-1281-2	9/7/2021	Upper Floor - Dining Room	0.187		Passive ventilation sample. Consumer products were not removed prior to sampling.
	3/4/2022		0.324	5.47	, ,
	2/2/2023		0.232	ND (<0.107)	
IAQ-1281-3	2/2/2023	Ground Floor - Bathroom	0.998	ND (<0.107	
		12	276 27th Avenu	ie	
IAQ-1276-1	9/30/2021	Ground Floor - Living,	0.156		Passive ventilation sample. Consumer products were not removed prior to sampling.
	3/4/2022	Laundry & Storage Room	1.91	ND (<0.107)	
	2/2/2023		0.221	ND (<0.107)	
IAQ-1276-2	9/30/2021	Upper Floor - Living Room	0.513	ND (<0.107)	Passive ventilation sample. Consumer products were not removed prior to sampling.
	3/4/2022		0.164	ND (<0.107)	
	2/2/2023		0.183	ND (<0.107)	
OAA-6	2/2/2023	Backyard	ND (<0.136)	ND (<0.107	
		12	280 27th Avenu	ıe	
IAQ-1280-1	9/30/2021	Ground Floor - Front	0.649 J4	ND (<0.107)	Passive ventilation sample. Consumer products were not removed prior to sampling.
	3/4/2022	Bedroom	0.406	ND (<0.107)	
	2/2/2023		0.54	ND (<0.107)	
IAQ-1280-2	9/30/2021	Upper Floor - Living Room	0.216 J4		Passive ventilation sample. Consumer products were not removed prior to sampling.
	3/4/2022		0.346	ND (<0.107)	. ,
	2/2/2023		0.346	ND (<0.107)	
IAQ-16	9/30/2021	Ground Floor - Garage	0.279 J4	ND (<0.107)	

Table 1. SUMMARY OF INDOOR AIR AND OUTDOOR AMBIENT AIR ANALYTICAL RESULTS

The 2550 Irving Street Site San Francisco, California Page 3 of 3

		Analyte:	PCE	TCE	
	Res	idential Air Screening Level:		0.48*	
Sample ID	Date	Location	μд,	/m³	Comments
		12	284 27th Avenu	ıe	
					Passive ventilation sample. Consumer
	9/7/2021		0.141	ND (<0.107)	products were not removed prior to
IAQ-1284-1		Ground Floor - Kitchen			sampling.
IAQ-1284-1	3/4/2022	Ground Floor - Kitchen	0.978	ND (<0.107)	
	2/2/2023		0.553	ND (<0.107)	
	2/17/2023		0.774	ND (<0.107)	Resampled location
		Hanar Floor Living Door			Passive ventilation sample. Consumer
	9/7/2021		0.215	ND (<0.107)	products were not removed prior to
140 1204 2					sampling.
IAQ-1284-2	3/4/2022	Upper Floor - Living Room	0.52	ND (<0.107)	
	2/2/2023 ²		NS	NS	
	2/17/2023		0.439	ND (<0.107)	Resampled location
					Passive ventilation sample. Consumer
IAQ-1284-3	9/7/2021	Ground Floor - Garage	0.228	ND (<0.107)	products were not removed prior to
IAQ-1204-5		Ground Floor - Garage			sampling.
	2/2/2023		0.422	ND (<0.107)	
	3/4/2022		0.519	ND (<0.107)	
OAA-5	2/2/2023	Backyard	ND (<0.136)	ND (<0.107)	
	2/17/2023		ND (<0.136)	ND (<0.107)	Resampled location

Notes:

September 2021 analytical data was referenced from the Offsite Indoor Air Quailty and Soil Vapor Monitoring Report dated January 14, 2022.

Residential air screening levels taken from the following sources in order of preference:

- Department of Toxic Substances Control HERO Note 3 (June 2020 Revised May 2022)
- United States Environmental Protection Agency Regional Screening Levels (November 2022)

Exceedances are **Bold** and highlight in yellow

DUP = duplicate

J = reported value is an estimate

J4 = the associated batch QC was outside the established quality control range for accuracy.

ID = identification

ND = not detected at or above reported detection limit (RDL)

PCE = tetrachloroethene

TCE = trichloroethene

μg/m³ = micrograms per cubic meter

¹ Canister missing during shipment - house was resampled.

² Canister did not achieve adequate vacuum pressure - house was resampled.

^{*} EPA Regional Screening Level Value

Table 2. SUMMARY OF SOIL VAPOR AND SUB-SLAB SOIL VAPOR ANALYTICAL RESULTS

The 2550 Irving Street Site San Francisco, California Page 1 of 1

		Analyte:	PCE	TCE	
	Residential S	SV SL $(\alpha = 0.03)$	15	16*	
		Depth		/m³	
Sample ID	Date	(feet bgs)	μg,	/m	Comments
			1271 26th Av	enue	
SVP-31A	3/2/2022	5	80.8	ND (<1.07)	
SVP-31A	2/1/2023	5	91.7	ND (<1.07)	
SVP-31B	3/2/2022	15	186	ND (<1.07)	
SVP-31B	2/1/2023	15	NS	NS	Not sample, due to moisture in tubing
VP-1271-1	3/4/2022	NA	69.3	1.15	Sub-slab vapor pin sample
VP-1271-1	2/1/2023	NA	55.6	ND (<1.07)	Sub-slab vapor pin sample
			1275 26th Av	enue	
SVP-32A	3/3/2022	5	74	ND (<1.07)	
SVP-32A	2/1/2023	5	93	ND (<1.07)	
SVP-32B	3/3/2022	15	187	ND (<1.07)	
SVP-32B	2/1/2023	15	313	ND (<1.07)	
			1281 26th Av	enue	
SVP-33A	2/2/2022	_	172	ND (<1.07)	
SVP-33A-DUP	3/3/2022	5	180	ND (<1.07)	
SVP-33A	2/1/2022	-	553	ND (<1.07)	
SVP-33A-DUP	2/1/2023	5	481	ND (<1.07)	
SVP-33B	3/3/2022	15	360	ND (<1.07)	
SVP-33B	2/1/2023	15	193	ND (<1.07)	
			1276 27th Av	enue	
SVP-28A	3/3/2022	5	95.7	3.73	
SVP-28A	2/2/2023	5	78.1	ND (<1.07)	
SVP-28B	3/3/2022	15	384	43.7	
SVP-28B	2/4/2022	4.5	202	ND / 44 07)	Helium results indicate a potential leak in
3VP-28B	2/1/2023	15	202	ND (<1.07)	the sampling train
			1280 27th Av	enue	
SVP-29A	3/4/2022	5	115	4.38	
SVP-29A	2/1/2023	5	88.3	ND (<1.07)	
SVP-29B	3/4/2022	15	57.7	ND (<1.07)	
SVP-29B	2/1/2023	15	212	ND (<1.07)	
			1284 27th Av	enue	
SVP-30A	2/4/2022	5	90.3	ND (<1.07)	
SVP-30A-DUP	3/4/2022	5	131	2.74	
SVP-30A	2/2/2022	F	88.3	ND (<1.07)	
SVP-30A-DUP	2/2/2023	5	96.4	ND (<1.07)	
SVP-30B	3/4/2022	15	202	ND (<1.07)	
SVP-30B	2/2/2023	15	308	ND (<1.07)	

Notes:

Residential air screening levels taken from the following sources in order of preference:

- Department of Toxic Substances Control (DTSC) HERO Note 3 (June 2020 Revised May 2022)
- United States Environmental Protection Agency (USEPA) Regional Screening Levels (November 2022)

Exceedances are **Bold** and highlight in yellow

0.03 attenuation factor (AF) taken from USEPA, 2015.

 α = attenuation factor ND = not detected at or above reported detection limit (RDL)

μg/m³ = micrograms per cubic meterNS = not sampledbgs= below ground surfacePCE = tetrachloroetheneDUP = duplicateRSL = Regional Screening LevelsID = identificationSV SL = Soil Vapor Screening Level

NA = not applicable TCE = trichloroethene

^{*} USEPA Regional Screening Level value used to calculate screening level.

Table 3. SUMMARY OF HELIUM ANALYTICAL RESULTS

The 2550 Irving Street Site San Francisco, California Page 1 of 1

				Helium				
Sample ID	Date	Depth ft-bgs	Helium in Sample %	Average Helium Under Shroud %	Leak Ratio ¹ %			
VP-1271-1	03/04/22	0.5	ND<0.100	23.2	NC			
VP-1271-1	02/02/23	0.5	0.357	22.7	1.57			
SVP-28A	03/03/22	5	ND<0.100	20.4	NC			
SVP-28A	02/02/23	5	ND<0.100	22.8	NC			
SVP-28B	03/03/22	15	0.355	21.7	1.64			
SVP-28B	02/02/23	15	1.34	20.0	6.71			
SVP-29A	03/04/22	5	0.321	21.6	1.48			
SVP-29A	02/01/23	5	0.307	25.7	1.20			
SVP-29B	03/04/22	15	0.137	21.2	0.65			
SVP-29B	02/02/23	15	0.232	22.8	1.02			
SVP-30A	03/04/22	5	0.270	20.2	1.34			
SVP-30A	02/02/23	5	0.302	22.5	1.34			
SVP-30A-DUP	03/04/22	5	0.628	20.2	3.11			
SVP-30A-DUP	02/02/23	5	0.336	22.5	1.50			
SVP-30B	03/04/22	15	0.217	21.9	0.99			
SVP-30B	02/02/23	15	0.205	20.4	1.01			
SVP-31A	03/02/22	5	0.438	20.1	2.18			
SVP-31A	02/01/23	5	ND<0.100	27.6	NC			
SVP-31B	03/02/22	15	0.371	20.3	1.83			
SVP-32A	03/03/22	5	0.275	19.8	1.39			
SVP-32A	02/01/23	5	ND<0.100	25.4	NC			
SVP-32B	03/03/22	15	0.369	20.3	1.82			
SVP-32B	02/01/23	15	0.375	22.2	1.69			
SVP-33A	03/03/22	5	0.168	19.8	0.85			
SVP-33A	02/01/23	5	0.154	27.3	0.56			
SVP-33A-DUP	03/03/22	5	0.462	19.8	2.33			
SVP-33A-DUP	02/01/23	5	0.245	27.3	0.90			
SVP-33B	03/03/22	15	0.447	22.6	1.98			
SVP-33B	02/01/23	15	0.106	22.3	0.48			

Notes:

Fixed gases analyzed by ASTM Method D-1946.

Cell highlighted in gray exceeds the 5% acceptable limit.

% = percent

DUP = duplicate

ft-bgs = feet below ground surface.

ID = identification

ND = not detected at or above reported detection limit (RDL)

NC = not calculated, helium not detected in sample.

¹ Estimated leak ratio (%) = [Concentration of Helium in Sample (%)] / [Concentration of Helium in Shroud (%)] X100.

Table 4. PCE CONCENTRATIONS IN INDOOR AIR AND ESTIMATED RISKS

The 2550 Irving Street Site San Francisco, California Page 1 of 1

Address	PCE Concentration Range (μg/m³) ^a	Mean PCE Concentration (μg/m³) ^b	# Samples > SL ^c	PCE Residential Inhalation Risk ^d	Notes	Empirical AF, March 2022*	Empirical AF, February 2023*
1271 26 th Avenue	0.151 - 0.264	0.204	0	4.E-07	Highest concentrations in September 2021. All samples screened out after removing consumer products.	0.003	0.005
1275 26 th Avenue	0.276 - 2.010	1.147	3	2.E-06	Exceedances consistently on upper floor, including September 2021. Ground floor exceedance only in March 2022.	0.027	0.003
1281 26 th Avenue	0.232 - 1.230	0.686	2	1.E-06	TCE Upstairs 5.47 μg/m ³ in March 2022. PCE results consistent with VI pathway.	0.007	0.002
1276 27 th Avenue	0.164 - 1.910	0.620	1	1.E-06	PCE exceedances inconsistent by floor and are data outliers.	0.020	0.003
1280 27 th Avenue	0.346 - 0.540	0.410	1	9.E-07	PCE results consistent with VI pathway.	0.004	0.006
1284 27 th Avenue	0.439 - 0.978	0.678	3	1.E-06	PCE results consistent with VI pathway. March 2022 outdoor air sample exceeded residential SL.	0.011	0.009

Notes:

- a Lowest and highest concentrations from the March 2022 and February 2023 indoor air results from (Sampling events conducted by DTSC and RMD.)
- b Mean of 4 samples: upstairs and downstairs samples (2) and corresponding seasonal replicates (2)
- c Of 4 seasonal pair samples
- d Risk assessed by dividing mean concentration by HHRA Note 3 residential air screening level and multiplying by 10^{-6} . Reported to one significant figure. $\mu g/m^3 = micrograms per cubic meter$
- > = greater than

= number

PCE = tetrachloroethene

*Empirical attenuation factors (AFs) are calculated by dividing the highest ground floor indoor air concentration by the concurrent external 5 foot depth soil vapor. For 1271 26th Avenue, the subslab vapor concentration was used in lieu of soil vapor.

Appendix A Vapor Probe Construction Design

Sulva	AllWest Environmental
All West	2141 Mission Street, Suite 1 San Francisco, CA 94110 Telephone: 415-391-2510

GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 9/28/20 16:29 - K:\BENTLEY\PROJECTS\202099.23 PCU SVP-26-28.GPJ

WELL NUMBER SVP-28 A/B PAGE 1 OF 1

AllW	ê est	Sar	r Franc	sion Street, Suite 100 cisco, CA 94110 ne: 415-391-2510			PAGE 1 OF 1	
CLIENT					PROJECT NAME PCU Subsurfa	ace		
PROJECT NUMBER 202099.23 PROJECT LOCATION 1276 27th Ave., San Francisco, CA								
				COMPLETED 8/27/20				
				ECA (Environmental Control Associates, Ir			· ·	
DRILLIN	IG METI	HOD	DPT	(direct push technology)	AT TIME OF DRILLING			
LOGGE	DBY S	Sam (Callow	vay CHECKED BY Len Niles	AT END OF DRILLING			
NOTES	_10" dia	a con	c. core	e, 6" dia vault box. Set perm SVPs @ 5' and	15' bgs AFTER DRILLING			
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		DESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM Casing Type: 1/4" OD Teflon Tub	
_	-		P 6 4	0.5 Concrete approximately 3" thick (SP) Tan to brown fine-grained san	d no odor or staining		6" Traffic rated vault	
 5	_	SP		4.0 (SP) Same as above.	a, no odor or staining.	PID = 0	box w/ concrete surface seal Cement/grout July 1/4" OD	
 	-	SP		8.0 (SP) Same as above.		PID = 0	Teflon tubing Dry bentonite Granular seal 2-inch SS mesh vapor tip	
10	_	SP		12.0			#2/16 sand filter pack Dry bentonite granular seal Hydrated bentonite	
		SP		(SP) Same as above.		PID = 0	granular seal	
15				15.5 Bottom of bor	rehole at 15.5 feet.	PID = 0	granular seal 2-inch SS mesh vapor tio	
							tip #2/16 sand filter pack	

- 0 -	
Sund	AllWest Environmental
Fund	2141 Mission Street, Suite
100 /	San Francisco, CA 94110
All West	Telephone: 415-391-2510

WELL NUMBER SVP-29 A/B PAGE 1 OF 1

ΔIIV	west	Sar	Franc	cisco, C	reet, Suite 100 CA 94110 -391-2510			PAGE 1 OF 1
	NT Police		-		-381-2310	PPO IECT NAME PCI Subsurface		
							/e San Frai	ncisco. CA
					COMPLETED <u>8/27/20</u>			
					Environmental Control Associates, Inc.)			
DRILL	ING MET	HOD	DPT	(direct	push technology)	AT TIME OF DRILLING		
LOGG	SED BY _	Sam (Callow	/ay	CHECKED BY Len Niles			
NOTE	S 10" dia	a con	c. core	e, 6" dia	a vault box. Set perm SVPs @ 5' and 15	bgs AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		MATERIAL DE	ESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM Casing Type: 1/4" OD Teflon Tu
	-		~ 6.4	0.3				6" Traffic rated vault
5	-	SP		4.0	(SP) Brown fine-grained sand w/ v. mi from 0.5-1' bgs, no odor or staining. (SP) Brown fine-grained sand, no odor		PID = 0.2	box w/ concrete surface seal Cement/grout slurry 1/4" OD Teflon Tubing Dry bentonite granular seal
	_						PID = 0.2	2-inch SS
-	-			8.0	(SP) Same as above.		- 110 - 0.2	mesh vapor tip
28-31.6PJ 10	-	SP		12.0	(SP) Same as above.		PID = 0	#2/16 sand filter pack Try bentonite granular seal Hydrated bentonite granular seal
12099.23 PCU SVP-28-31.GPJ	-	SP		15.5			PID = 0	Dry bentonite granular seal 2-inch SS
			P. S. S. S.	, 10.0	Bottom of boreh	ole at 15.5 feet.		mesh vapor
GENERAL BH / IP / WELL - GIN SID US LAB.GUT - 9/28/20 18.35 - K.BENILEYIP-KOJEU ISAZ								tip #2/16 sand filter pack

- 0 -	
Sund	AllWest Environmental
Fund	2141 Mission Street, Suite
100 /	San Francisco, CA 94110
All West	Telephone: 415-391-2510

WELL NUMBER SVP-30 A/B PAGE 1 OF 1

\$ IIV	n ₂	Sar	Franc	sion Street, Suite 100 cisco, CA 94110			PAGE 1 OF 1
	Vest			e: 415-391-2510	DDO IFOT NAME DOLL Cultaring		
1	IT <u>Police</u>			on 099.23			ancisco
1				COMPLETED 8/27/20			
				ECA (Environmental Control Associates, In			
				(direct push technology)			
LOGG	ED BY	Sam (Callowa	ay CHECKED BY Len Niles			
NOTE	S <u>10" di</u>	a con	c. core	e, 6" dia vault box. Set perm SVPs @ 5' and	15' bgs AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		DESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM Casing Type: 1/4" OD Teflon Tu
	-		P 5 4	,			6" Traffic rated vault
 5 -	-	SP		(SP) Brown fine-grained sand w/ v. debris), no odor or staining. 4.0 (SP) Brown fine-grained sand, no od		PID = 0	box w/ concrete surface seal Cement/grout slurry 1/4" OD Teflon tubing Dry bentonite granular seal 2-inch SS
	-	-		8.0 (SP) Same as above.			mesh vapor tip
10		SP		12.0		PID = 0	#2/16 sand filter pack Dry bentonite granular seal Hydrated bentonite
15		SP		(SP) Same as above.		PID = 0	granular seal Dry bentonite granular seal
15				15.5	ehole at 15.5 feet.	PID = 0	2-inch SS mesh vapor
							tip #2/16 sand filter pack

GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 9/28/20 16:35 - K:\BENTLEY\PROJECTS\202099.23 PCU SVP-29-31.GPJ

WELL NUMBER SVP-31 A/B PAGE 1 OF 1

AllWest			cisco, CA 94110 e: 415-391-2510			
CLIENT Police	e Cred	dit Unio	on	PROJECT NAME PCU Subsurface		
PROJECT NUM	IBER	2020	099.23	PROJECT LOCATION 1271 26th A	ve., San Fra	ancisco,
DATE STARTE	D <u>8/</u>	26/20	COMPLETED <u>8/26/20</u>	GROUND ELEVATION	_ HOLE S	SIZE 2" inches
DRILLING CON	ITRAC	CTOR	ECA (Environmental Control Associates, Inc	(<u>.</u>) GROUND WATER LEVELS:		
DRILLING MET	HOD	DPT	(direct push technology)	AT TIME OF DRILLING		
LOGGED BY	Sam (Callow	vay CHECKED BY Len Niles	AT END OF DRILLING		
NOTES 10" di	a con	c. core	e, 6" dia vault box. Set perm SVPs @ 5' and 1	5' bgs AFTER DRILLING		
O DEPTH (ft) SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIAL D	DESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM Casing Type: 1/4" OD Teflon Tut
		P. S. A.	у стительный стительны			[] [⋖ 6" Traffic
 	SP		(SP) Brown fine-grained sand, no odd	or or staining.	PID = 0	rated vault box w/ concrete surface seal Cement/grout
<u>5</u> 	SP		(SP) Same as above.		PID = 0	Teflon tubing Dry bentonite granular seal 2-inch SS mesh vapor
10	SP		(SP) Same as above.		PID = 0.1	tip #2/16 sand filter pack
 	SP		(SP) Same as above.		PID = 0	bentonite granular seal
15			: 15.5			granular seal 2-inch SS
		je vijet		hole at 15.5 feet.		2-Inch SS mesh vapor tip #2/16 sand filter pack

WELL NUMBER SVP-32 A/B PAGE 1 OF 1

	West				CA 94110 391-2510				
	NT Police	e Cred	dit Unio	n		PF	ROJECT NAME PCU Subsur	face	
							ROJECT LOCATION 1275 26	6th Ave., San Fra	ancisco,
					COMPLETED 8/26/20				
DRILI	ING CON	TRAC	TOR _	ECA (Environmental Control Associates, I	<u>nc.</u>) GF	ROUND WATER LEVELS:		
DRILL	ING MET	HOD	DPT	(direct	push technology)		AT TIME OF DRILLING	-	
LOGG	SED BY _	Sam (Callowa	ау	CHECKED BY Len Niles		AT END OF DRILLING	•	
NOTE	S 10" dia	a con	c. core	, 6" dia	a vault box. Set perm SVPs @ 5' and	<u>1</u> 5' bg	s After Drilling		
O DEPTH (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG		MATERIAL	DESC	RIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM Casing Type: 1/4" OD Teflon Tut
	-		~ 6.4	0.3					■6" Traffic rated vault
		SP		4.0	(SP) Brown fine-grained sand, no control (SP) Same as above.	odor or	staining.	PID = 0	box w/ concrete surface seal Cement/grout slurry 1/4" OD
_ 5 	-	SP		8.0	(SP) Same as above.			PID = 0	Teflon Tubing Dry bentonite granular seal 2-inch SS mesh vapor tip
10 10		SP		12.0				PID = 0	#2/16 sand filter pack Dry bentonite granular seal Hydrated bentonite
S/202099.23 PCU SVP-32-33.6PJ		SP		15.5	(SP) Same as above.			PID = 0	granular seal Dry bentonite granular seal 2-inch SS
02036					Bottom of bo	rehole	at 15.5 feet.		mesh vapor tip
GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 9/28/20 16:48 - K.'BENTLEY.PROJECTS!202099					Bottom of bo	rehole	at 15.5 feet.		mesh vapor tip #2/16 sand filter pack

WELL NUMBER SVP-33 A/B PAGE 1 OF 1

	West			ncisco, CA 94110 ne: 415-391-2510				
	NT Police					PROJECT NAME PCU Subsurface	:	
				099.23				ancisco.
				COMPLETED 8/26/20				
				ECA (Environmental Control Associates,				
				Γ (direct push technology)				
				way CHECKED BY Len Niles				
				re, 6" dia vault box. Set perm SVPs @ 5' ar				
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	U.S.C.S.	GRAPHIC LOG	MATERIA	AL DI	ESCRIPTION	ENVIRONMENTAL DATA	WELL DIAGRAM Casing Type: 1/4" OD Teflon Tut
, ,		-	p 6 4	. Control approximatory o triloit.				[] [] ⋖ 6" Traffic
		SP		(SP) Brown fine-grained sand, no 4.0 (SP) Same as above.	o odo	or or staining.	PID = 0.1	rated vault box w/ concrete surface seal Cement/grout slurry 0 1/4" OD TeflonTubing
<u>5</u> 		SP		8.0			DID - 0	TeflonTubing Dry bentonite granular seal 2-inch SS mesh vapor tip
10	_			(SP) Same as above.			PID = 0	#2/16 sand filter pack
_		SP		12.0 (SP) Same as above.			PID = 0	
15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -		SP					PID = 0	Dry bentonite granular seal
.099.2			F1 4 (+1.)		boreh	nole at 15.5 feet.		mesh vapor
GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 9/28/20 16:48 - K:\BENTLEY.PROJECTS\202099.23 PCU SVP-32-33.GP.				Bottom of b	boreh	nole at 15.5 feet.		Ž-inch SS

Sub-Slab Cox-Colvin Vapor Pin® Installation Sectional View

Appendix B

Indoor/Outdoor Ambient Air and Soil Vapor Sample Field Log

Indoor Air Sampling Form

Project Name: DTSC-Police Credit Union

Project Number: 01-DTSC-007

Location: 26th + 27th AUG. / 12UING St.

Sample ID	Canister ID	Location at Site	Date	Time	Summa Vacuum (in. Hg)	Recent remodeling? (Yes/No)	Internal HVAC System (On/Auto/Off)	HVAC/Fan Airflow Observed? (Yes/No)	Comments
TAG-1271	10836	Ground Floor garage	Start 3322 Finish 3432	0806	- 29	1/10	NA	NG	manifold: 11387
142-1271- OVP	26364	Ground Place gurage	Start 3 3 22	0806	-29.5	NO	NA	NA	manifold: 9935
199-1371- a	11086	Ground Floor	Finish 3/4/27 Start 3/3/22	0349	-4	NO	100	ON-yes Heating	manifold: 12022
5AQ-1271-	21241	upper Floor Tiving Room	Finish 3/4/22 Start 3/3/27 Finish 3/4/22	08747	-5 -29 -6	20	010	010-Yes Heating	mailfold: 10033
0AA-4	11262	1271 BACKYARI	Start 3 3 22	-	78	100	Aju	Aju	manifold: 010034
IAQ-1361- 2		Upper Mosa dinning Room	Start 3/3/32	0904	-27 -3.5	"NO	NA Space Heater	space Henter	manifold: 10046
IAQ-1361-	Grand & Floor Tring Dom	CPON	Start 3/3/37 Finish 3/4/22	0906	-30	NO	NA Space Heinter	Goace Henter	manifold: 5289
±14Q-1460-		Grand Fleed Front Bedram	Start 3/3/27 Finish 3/4/2	1000	-30 -7	120	610	on Heating	maisold:9709
±40-1380-	PPA	living room	Start 3337		-3.8	700	010	on iteating	manifold: 10026

Indoor Air Sampling Form

Project N	lame:	DTSC-	Police	Credit	Union
-----------	-------	-------	--------	--------	-------

Project Number: 01-DTSC-007

Location:

Sample ID	Canister ID	Location at Site		Date	Time	Summa Vacuum (in. Hg)	Recent remodeling? (Yes/No)	Internal HVAC System (On/Auto/Off)	HVAC/Fan Airflow Observed? (Yes/No)	Comments
IAQ-1284-	7989	Ground Flair Witchen	Start	313122	6460	-30	Nô	252	Nes	men volch: 11412
1		Finish	214139	0919	-6	<u> </u>				
DAW-1264-	10409	Upper Plan	Start	3/3/27	0937	-38		ده	125	menivoid: 11396
2 10909 11	ilving voor	Finish	3/4/22	69H	0	100				
marin in	10795	138-1	Start	3/3/23	0930	-29	NO	NA	Yes-outsole	meni sold: 12023
0AA-5	101.13	Backgord	Finish	3/4/22	-923	-3				*
#4Q-1371		Ground Floor- living; landry, 8 Storage	Start	3/3/22	1027	7-30	No	NN	NA	moni toid: 5699
£11111	& Storinge	Finish	34/20		-7	100			*	
THQ-1276 -	0-20	upper Floor	Start	3/3/22	1601	-30	54	ØN.	123 -	ment Fold: 7821
2	8033	living from	Finish	3/4/22	951	-6	Me		Yes- Heating	
TAQ-1275-		Grand Plain	Start	3322	1234	-27,5	20	NO	NO	manifold: 10013
3	11132	Bathram	Finish	3422	1128	-4	,,,,,	,,,,,		
IAQ-1276-	10833	iving and bining	Start	3332	1230	-30	No	20	Electric Fire place	memi Fold: 5275
2		Roem	Finish	314/22	1126	-7			Electric fire place	
			Start					-		
			Finish							
			Start							
			Finish							

Date:	3-4-22		Sampler:	BATEM			
Client:	DTSC		Project #:	01-DTSC-007			
Container Type:	1-L Summa		Container ID:	7638			
Sample ID:	VP-1271-	1	Manifold ID:	6818			
Duplicate Sample ID:	-						
Weather:	OVERCUST		Temperature:	50°			
Precipitation: Has it	rained >0.5 inch duri	ng a 24-hour perio	od in the last 5 days?	No X Yes R	Rainfall in.		
	If no, proceed with	collection of sam	ple. If yes, contact PM				
Sampling Device:	1L Summa		Leak Test: Shut-In +3" RASS -20"				
Purge Volume:	85ml,		Leak Check Compou	nd: Helium			
Purge Flow Rate:	200 ml n	ûn	Sample Start Time:	+049 ->	- 1100		
Purge Duration:	1 min		Start Vacuum:	-28.5			
Purge Start Time:	SHOJ		Sample End Time:	1105			
Purge End Time:	FP61		End Vacuum:	-5			
		Field I	Vieasurements (
			Purge				
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments		
1047	200 mlmi	0.0	28.8	-	PASS		
*If ratio of in-line heli	ium to shroud heliun		k and notify project ma	anager before colle	cting sample.		
	Flow Rate	Vacuum	Helium in Shroud	1			
Time	(mL/min)	(in Hg)	(%)	C	omments		
1049 1100	200	-28.5	16.4				
1101		-38-26	16.8				
1102		-26-24	11.19				
1103	1000	-22	28.7				
1104		-16	28.5				
1105		-11	27.3				
	***		Notes				
IN 0.3 /00	T 0.34	CAN	4 8751 1	NITTAL VAC	23"		
1/1/1/19		Lones					
		, , ,		99			
Sampler's Signature:		-5	26.0	1			

Date:	3.322		Sampler:	BALEM	
Client:	DTSC		Project #:	01-DTSC-007	
Container Type:	1-L Summa		Container ID:	8486	
Sample ID:	SVP-28A	•	Manifold ID:	11478	
Duplicate Sample ID:	_				
Weather:	llakt RUN		Temperature:	260	
Precipitation: Has it r		ing a 24-hour perio	od in the last 5 days?	No 😧 Yes 🔲	Rainfall in.
	If no, proceed wit	h collection of sam	ple. If yes, contact PM	l.	
Sampling Device:	1L Summa		Leak Test:	Shut-In 14"	PASS
Purge Volume:	2300 ml		Leak Check Compou	ınd: Helium	
Purge Flow Rate:	200 ml/m	un	Sample Start Time:	1554	
Purge Duration:	11. buin		Start Vacuum:	-29	
Purge Start Time:	1541		Sample End Time:	1559	
Purge End Time:	1553		End Vacuum:	-4	
	4	Field I	Measurements		
			Purge		
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments
1541	200	0.2	10.8	112	
1544	200	0.2	18.5		
(SHF)		0.1	21.5	0.5	
1550		0.1	18-6	0.5	
1553	1	0.2	16.9	1.1	PASS
*If ratio of in-line helic	um to shroud heliur			anager before colle	
			ole Collection	<u> </u>	<u> </u>
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)		Comments
1554	200	-79	21.1		
1555	~~~	-24	20.7		
1556		-19	19.6		
1557		-14	20.9		
1588	10000	-9	20.2		
1559	V	4	19.4		
			Notes		
	are I MAIO as 3		140/22		
IN 0.2 0	ים בוודה וט	_			

Sampler's Signature:

Date:	3.3.22		Sampler:	EM BA			
Client:	DTSC		Project #:	01-DTSC-007			
Container Type:	1-L Summa		Container ID;	9318			
Sample ID:	_5VP-200	SVP-28B	Manifold ID:	11700			
Duplicate Sample ID:	-						
Weather:	light pain	ONERCUST	Temperature:	263			
Precipitation: Has it ra			od in the last 5 days?	No Y Yes R	ainfall in.		
	If no, proceed with	collection of sam	ole. If yes, contact PM				
Sampling Device:	1L Summa		Leak Test:	Shut-In 17", PASS			
Purge Volume:	2600 ml		Leak Check Compou	nd: Helium			
Purge Flow Rate:	200 ml 1	Min.	Sample Start Time:	1422			
Purge Duration:	13 min		Start Vacuum:	- 29			
Purge Start Time:	1607		Sample End Time:	- 1426			
Purge End Time:	1620		End Vacuum:	-5			
		Field I	/leasurements				
			Purge				
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments		
F001	200	0.0	24.0		Vital III III II		
1610	1	0.0	24.4				
1613		0.0	20.7	-			
1616		0.0	22.0	-			
1620	1	0.0	32.0	_	PASS		
	um to shroud heliun		k and notify project ma	anager before collec			
			le Collection				
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Co	omments		
1435	200 pelmin	- 2 q	20.8 1.				
1423		-24	20.4%				
1424	Jul = 10 = 11	-18	33.71				
1492		-12	22.1%				
1426	上	- 5	21.81				
		4,4					
			Notes				
OUT 0.3, IN'	n. 0						
001 0.5, 10	U						

Sampler's Signature:

Date:	3/4/22		Sampler:	B. Angulo and	l E. Male	
Client:	DTSC		Project #:	01-DTS&-007		
Container Type:	1-L Summa		Container ID:	9369		
Sample ID:	5VD-2914		Manifold ID:	11163		
Duplicate Sample ID						
Weather:	Mostly Sw	MUM MINDY	Temperature:	54°F		
Precipitation: Has it	rained >0.5 inch duri		od in the last 5 days?	No 🔽 Yes 🔲 R	ainfallin,	
	If no, proceed with	collection of samp	ole. If yes, contact PM			
Sampling Device:	1L Summa		Leak Test:	Shut-In - 1914y	ndl	
Purge Volume:	2,300 ml		Leak Check Compou	ınd: Helium		
Purge Flow Rate:	De 200	nulluin	Sample Start Time:	1930		
Purge Duration:	11.6 min		Start Vacuum:	-30		
Purge Start Time:	1207		Sample End Time:	+154	1225	
Purge End Time:	1219		End Vacuum:	45		
		Field 1	Measurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
1207	200ml min	0.1	28.2	0.35		
1210		0.1	8.2.8	4.0		
1213		0.0	18.5	-		
1216		0.0	16.5			
1219	1	0.0	9.8		PA-55	
*If ratio of in-line he	elium to shroud helium		k and notify project m	anager before collec	cting sample.	
		Samp	le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	C	omments	
1221	acomelina	- 25	24.9 %			
1222		-20	20.4 1/			
1223		-15	22.74			
1224		-10	20.4%			
1225	<i></i>	-15	19.7.1			
			Notes			
100110	WT 0.2					

Sampler's Signature: B. Aller

Container Type: 1-L Summa Container ID: 1424 7904 Sample ID: 5 VP-29B Manifold ID: 11446 Duplicate Sample ID: Weather: Precipitation: Has it rained >0.5 inch during a 24-hour period in the last 5 days? No Yes Rainfall in. If no, proceed with collection of sample. If yes, contact PM. Sampling Device: 1L Summa Leak Test: Shut-In 14 Wold; good Purge Volume: 2,600 M Leak Check Compound: Helium Purge Flow Rate: 300 M Sample Start Time: 1245 Purge Duration: 13 MM Start Vacuum: -29 Purge Start Time: 1232 Sample End Time: 1249	Date:	3/4/22		Sampler:	B. Angulo			
Sample ID: 5 VP-298 Manifold ID: 11446 Duplicate Sample ID: Partly Clocky Weather: Precipitation: Has it rained >0.5 inch during a 24-hour period in the last 5 days? No Ves Rainfall in. If no, proceed with collection of sample. If yes, contact PM. Sampling Device: 1L Summa Leak Test: Shut-In 14 Wald; good Purge Volume: 2,600 ML Leak Check Compound: Helium Purge Flow Rate: 200 ML WW Sample Start Time: 1245 Purge Duration: 13 Min Start Vacuum: > 29 Purge End Time: 1232 Sample End Time: 1249 Purge End Time: 1245 Field Measurements Purge Time Flow Rate Helium In-Line (mL/min) (%) Helium Ratio* (%) Comments 1235 200 ML/Min D. I 20-5 1. 0.19 1. 1236 0.1 20-0 1. 20-5 1. 0.19 1. 1241 0.1 20-7 . 0.51. 1241 0.1 20-7 . 0.78 1. 1444 1944 1946	Client:	DTSC		Project #:	01-DTSC-007			
Duplicate Sample ID: Weather: Percipitation: Has it rained >0.5 inch during a 24-hour period in the last 5 days? No Yes Rainfall in. If no, proceed with collection of sample. If yes, contact PM. Sampling Device: 1L Summa	Container Type:	1-L Summa		Container ID:	142d 7904			
Weather: Partly Gody Temperature: 54°F Precipitation: Has it rained >0.5 inch during a 24-hour period in the last 5 days? No	Sample ID:	5 VP-29B		Manifold ID:				
Precipitation: Has it rained >0.5 inch during a 24-hour period in the last 5 days? No	Duplicate Sample ID:							
If no, proceed with collection of sample. If yes, contact PM. Sampling Device: 1L Summa	Weather:	Partly	Howly	Temperature:	54°F			
Sampling Device: 1L Summa	Precipitation: Has it r	ained >0.5 inch duri	ng a 24-hour perio	od in the last 5 days?	No Yes Rai	nfall in.		
Purge Volume: 2,600 ml Leak Check Compound: Helium		If no, proceed with	collection of sam	ple. If yes, contact PM.				
Purge Volume: 2,600 ml Leak Check Compound: Helium	Sampling Device:	1L Summa		Leak Test: Shut-In -14 hold: good				
Purge Flow Rate: 200	Purge Volume:	2,600 ml		Leak Check Compou	nd: Helium	7.0		
Purge Duration: 13 min	Purge Flow Rate:		in	Sample Start Time:	1245			
Purge Start Time: 1232 Sample End Time: 1249 Purge End Time: 1245 End Vacuum: -5 Field Measurements	Purge Duration:			Start Vacuum:				
Purge End Time: 1245	Purge Start Time:			Sample End Time:				
Time Flow Rate (mL/min) Helium In-Line (%) Helium Ratio* (%) Comments (%) 1235 200mUmin 0.1 20.5 1/. 0.49 1/. 1238	Purge End Time:	A STATE OF THE STA		End Vacuum:	-5			
Time Flow Rate (mL/min) Helium In-Line (%) Helium Ratio* (%) Comments (%) 1235 200mUnin 0.1 20.5 1/. 0.49 1/. 1238			Field I	Vieasurements				
1235 200ml/min (%) (%) (%) Comments 1235 200ml/min 0.1 20.5 1/. 0.49 1/. 1238 0.1 20.0 1/. 0.5 1/. 1241 0.1 21.3 1/. 0.42 1/. 1244 0.1 20.7 1/. 0.78 1/. 1244 120 ml/min (in Hg) (%) Comments 1246 200 ml/min -23 21.6 1/. 1247 -13 1 20.9 1/. 1249 -11 20.9 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/. 1249 -5 21.0 1/.								
1238	Time					Comments		
1238	1235	200ml/min	0.1	20.5 1.	0.49.1			
1241			0.1		0.5%			
1244 + 0.1 20.7 1/. 0.48 1/. *If ratio of in-line helium to shroud helium is >5%, stop work and notify project manager before collecting sample. Sample Collection Time Flow Rate (mL/min) (in Hg) (%) Comments 1246 200 Minio - 23 21.6 1/. 1247 - 13 1 20.9 1/. 1249 - 5 21.0 1/. Notes			0.1					
Time Flow Rate Vacuum Helium in Shroud Comments 1246 200 ml/min -23 21.6 1 1247 -11 20.9 1 1248 -11 20.9 1 1249 -5 21.0 1	219 4	1	0.1	20.7 Y.				
Time (mL/min) (in Hg) (%) 12 46 200 mUmin - 23 21.6 1/ 12 48 -11 20.9 1/ 12 49 - 5 21.0 1/ Notes	*If ratio of in-line heli	um to shroud helium			anager before collecti	ng sample.		
1247 -167 20.97. 1249 - 5 21.07. Notes	Time				Con	nments		
1247 -167 20.97. 1249 - 5 21.07. Notes	1246	200 milnin	- 23	21.6%				
1248 -11 20.97. 1244 - 5 21.07. Notes	1247		-187					
1249								
		1	- 5	21.0%				
out: 00.2 in : 80.1				Notes				
	out: 00.2 in	n ! 80.1						

Client: DTSC Container Type: 1-L S Sample ID: SW Weather: Precipitation: Has it rained If no Sampling Device: 1L Si Purge Volume: 2 Purge Flow Rate: 200 Purge Start Time: Purge End Time: Time	Johnson Summa P 30 A - Du Was Hy >0.5 inch durin proceed with umma 1300mL 11.6 min 1305 1316 Flow Rate	Sunny ng a 24-ho collection	wirdy our perion of samp		7860 5y°F No ✓ Yes ☐ R Shut-In	Dup: 12407 Dup: 11487 ainfall in. 1328 1328
Sample ID: Duplicate Sample ID: Weather: Precipitation: Has it rained If no Sampling Device: Purge Volume: Purge Flow Rate: Purge Duration: Purge Start Time: Purge End Time: Time	P-30A-Du Wostly >0.5 inch durin , proceed with umma 1300mL INL min 1305 1316 Flow Rate	Sunny ng a 24-ho collection	wirdy our perion of samp	Manifold ID: Temperature: od in the last 5 days? ole. If yes, contact PM Leak Test: Leak Check Compou Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	7860 5y°F No ✓ Yes □ R Shut-In nd: Helium \%3\\28 \328	oup: 1787 ainfall in.
Sample ID: Duplicate Sample ID: Weather: Precipitation: Has it rained If no Sampling Device: Purge Volume: Purge Flow Rate: Purge Duration: Purge Start Time: Purge End Time: Time	Mostly >0.5 inch durin , proceed with umma 2300mL Ml. b min 1305 1316 Flow Rate	Sunny ng a 24-ho collection	wirdy our perion of samp	Temperature: od in the last 5 days? ole. If yes, contact PM Leak Test: Leak Check Compou Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	Shut-In nd: Helium	0~1. 1324 -24
Purge Flow Rate: Purge Start Time: Purge End Time: Time	Mostly >0.5 inch durin , proceed with umma 2300mL Ml. b min 1305 1316 Flow Rate	Sunny ng a 24-ho collection	wirdy our perion of samp	d in the last 5 days? ble. If yes, contact PM Leak Test: Leak Check Compou Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	No Yes R Shut-In Ind: Helium -7324 -28 1328	-94 Ont: 1374
Weather: Precipitation: Has it rained If no Sampling Device: Purge Volume: Purge Flow Rate: Purge Duration: Purge Start Time: Purge End Time: Time	Mostly >0.5 inch durin , proceed with umma 1300mL Ml min 1305 1316 Flow Rate	Sunny ng a 24-ho collection	our perion	d in the last 5 days? ble. If yes, contact PM Leak Test: Leak Check Compou Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	No Yes R Shut-In Ind: Helium -7324 -28 1328	-94 Ont: 1374
If no. Sampling Device: 1L So. Purge Volume: 200 Purge Flow Rate: 200 Purge Duration: Purge Start Time: Purge End Time: Time	proceed with umma 2300mL MUmin 1305 1316 Flow Rate	collection	n of samp	Leak Test: Leak Check Compou Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	Shut-In nd: Helium \%)\ -28 \328	-94 Ont: 1374
If no. Sampling Device: 1L So. Purge Volume: 200 Purge Flow Rate: 200 Purge Duration: Purge Start Time: Purge End Time: Time	proceed with umma 2300mL MUmin 1305 1316 Flow Rate	collection	n of samp	Leak Test: Leak Check Compou Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	Shut-In nd: Helium\%\dagger\\28	-94
Purge Volume: 200 Purge Flow Rate: 200 Purge Duration: Purge Start Time: Purge End Time: Time	1300mL 11.6 min 1305 1316 Flow Rate		Field !	Leak Check Compour Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	nd: Helium - 1324 - 28	-94
Purge Volume: Purge Flow Rate: Purge Duration: Purge Start Time: Purge End Time: Time	1305 1316 Flow Rate		Field !	Sample Start Time: Start Vacuum: Sample End Time: End Vacuum:	-1324 -28 1328	-94
Purge Flow Rate: 200 Purge Duration: Purge Start Time: Purge End Time: Time	1305 1316 Flow Rate		Field !	Start Vacuum: Sample End Time: End Vacuum:	1328	-94
Purge Duration: Purge Start Time: Purge End Time: Time	1305 1316 Flow Rate		Field I	Sample End Time: End Vacuum:	1328	
Purge Start Time: Purge End Time: Time	1305 1316 Flow Rate		Field I	End Vacuum:		1328
Purge End Time: Time	1316	Halium	Field I		4	-5
Time 1308		Helium	Field I	Vleasurements		
130 g		Helium				
130 g		Helium		Purge		
	Flow Rate Helium In-L (mL/min) (%)			Helium in Shroud (%)	Helium Ratio* (%)	Comments
	200ml/win	00.0		16.17.	_	
1361		0.1		17.1	0.58%	Pass
1314	WELL					
1316					-	
1012		5				
*If ratio of in-line helium to	shroud helium	n is >5%,	stop wor	rk and notify project m	nanager before colle	cting sample.
			Samp	ole Collection		
Time	Flow Rate (mL/min)	Vad (in	hum Jap	Helium in Shroud (%)	С	Comments
1324 2	Loundan	-28	-29	22.1		
1325	1	u	-25	20.4		
1326		عاد	-19	19.5		
1327		40	14	19.8		
1328		-(-10			
1328	Ų	-2-1	-5	19.5		
			1 1 1 1	Notes		

Date:	3/4/22		Sampler:	B. Hogelo and	el E. Miorie		
Client:	DTSC		Project #:	01-DTSC-007	PACKETAL A		
Container Type:	1-L Summa		Container ID:	10690			
Sample ID:	-519 30B S	VP-30B	Manifold ID:	20684			
Duplicate Sample ID	:						
Weather:	Mosily Suny -	Highwinds	Temperature: 54°F				
Precipitation: Has it	rained >0.5 inch dur	ing a 24-hour perio	Temperature: od in the last 5 days?	No Yes Ra	infall in		
			ple. If yes, contact PM.				
Sampling Device:	1L Summa		Leak Test:	eak Test: Shut-In -15 Hg Hold greek			
Purge Volume:	2,600mL		Leak Check Compou		0		
Purge Flow Rate:	2,600mL 200mL/1	un	Sample Start Time:	1355			
Purge Duration:	13m	in	Start Vacuum:	-29			
Purge Start Time:	1341		Sample End Time:	(359			
Purge End Time:	1354		End Vacuum:	-4			
	*	Field Measurements					
		110101	Purge				
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments		
1344	Zoomtlinin	00.1	20.8	0.481			
1347		00.1	21.7	0.461			
1350		00-0	20.4	-			
1353		0	20.0				
*If ratio of in-line he	ium to shroud heliur	n is >5%, stop wor	k and notify project ma	anager before collect	ing sample.		
		Samp	ole Collection				
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Co	mments		
1356	200ml luin	- 24	22.6 /				
1357		-18	22.2%				
1358		-12	21,7%				
1359	.1	-5	21.17				
			Notes				

Sampler's Signature:

B. A.

DTSC			8. Angulo		
10130		Project #:	01-DTSC-007		
1-L Summa		Container ID:	11844		
5VP-31 H		Manifold ID:	011125		
Alu					
	e	Temperature:	blof		
ained >0.5 inch duri	ng a 24-hour perio	od in the last 5 days?	No X Yes R	ainfall in.	
If no, proceed with	collection of samp	ole. If yes, contact PM			
1L Summa		Leak Test: Shut-In TI"			
~2,300ml		Leak Check Compou	nd: Helium		
	C	Sample Start Time:	1357		
		Start Vacuum:	-29		
1347		Sample End Time:	1407		
1354		End Vacuum:	-4		
	Field N	Measurements			
		Purge			
Flow Rate	Helium In-Line	Helium in Shroud	Helium Ratio*	Comments	
(mL/min)	(%)	(%)	(%)	Comments	
nin lucas	Ø	23.9	-		
11	0.1	17.5			
1/1	0.2	22.0	~0.9%		
N	0.2	23.4	~0.85%		
าา	0.01	1.7	~0.46To	PASS	
um to shroud heliur			anager before collec	ting sample.	
,			1		
			Co	omments	
	-74	173			
	~ `	11,0			
_			W.		
	-9				
			J		
		Notes			
2 out start	@ 00.2				
	Flow Rate (mL/min) Flow Rate (mL/min) Plow Rate (mL/min) 100 Rate (mL/min) 11 Rate (mL/min) 11 Rate (mL/min)	Hate ained >0.5 inch during a 24-hour period If no, proceed with collection of samp 1L Summa 2,300 ml 200 ml min 1342 1354 Field M Flow Rate (mL/min) (%) 200 ml min 100 ml min 110	Temperature: ained >0.5 inch during a 24-hour period in the last 5 days? If no, proceed with collection of sample. If yes, contact PM 1L Summa Leak Test: Leak Check Compou Leak Check Compou Sample Start Time: Start Vacuum: Start Vacuum: Field Measurements Purge Flow Rate (mL/min) In O.D. In O.D. In O.D. Sample End Time: Flow Rate (mL/min) In O.D. In O.D. Sample Collection Flow Rate (mL/min) (mL	HARE HARE Temperature: b1°F ained > 0.5 inch during a 24-hour period in the last 5 days? No Yes R If no, proceed with collection of sample. If yes, contact PM. IL Summa	

Date:	3 2 22		Sampler:	B. Hagulo			
Client:	DTSC		Project #:	01-DTSC-007			
Container Type:	1-L Summa		Container ID:	8905			
Sample ID:	5VP-31B		Manifold ID:	6814			
Duplicate Sample ID:	1						
Weather:	Partly C	ady	Temperature:	62 0 =			
Precipitation: Has it r	ained >0.5 inch dur	ing a 24-hour perio	od in the last 5 days?	No 🛛 Yes 🔲 F	Rainfall in.		
	If no, proceed wit	h collection of samp	ole. If yes, contact PM				
Sampling Device:	1L Summa		Leak Test: Shut-In -to"				
Purge Volume:	2,600 ml		Leak Check Compou				
Purge Flow Rate:			Sample Start Time:	1435			
Purge Duration:			Start Vacuum:	-29			
Purge Start Time:	1417		Sample End Time:	1440			
Purge End Time:	1430		End Vacuum:	-5			
		Field I	Measurements				
			Purge				
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments		
1417	026	18.40,5	A 18.4	2.7%	PAUSE PURGE, FIX		
1423 1427	11	0.3	26.3	1.190			
1431	17	0.2	21.2	0.970			
1433	11	0.1	1.85	0.4%	PASS		
*If ratio of in-line hel	ium to shroud heliu	ım is >5%, stop wo	rk and notify project m	anager before colle	ecting sample.		
	_		ole Collection	-			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)		Comments		
1025	J-00	-29	19.0	4			
1430	200	-24	18.9				
1430	u	-(9	23.5				
1438	11	44	20.6				
1439	11	-10	1.96				
1440	· ·	-5	19.7				
((()			Notes				
OUT START	n 2						
IN START	0.2						
ID SIMI-	010						

3/3/22		Sampler:	B. Aneplo			
DTSC		Project #:	01-DTSC-007			
1-L Summa		Container ID:	5706			
5VP-32A		Manifold ID:	7441			
_						
Show	45	Temperature:	D3°F			
		od in the last 5 days?	No Yes R	ainfallin.		
If no, proceed with	collection of sam	ple. If yes, contact PM	•			
1L Summa		Leak Test:	Shut-In & PASS			
2,300 m L		Leak Check Compou	nd: Helium			
	N	Sample Start Time:	1326			
		Start Vacuum:	-29			
1313		Sample End Time:	1331			
1324		End Vacuum:	1-4			
	Field I	Vieasurements				
		Purge				
Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments		
200ml min	17,7	00.1	0.56 %			
	21.4	00.0	0			
	20.3	00.0	0			
	20.0	00.0	0			
V	19.4	00-0	6	PASS		
um to shroud helium			anager before colle	cting sample.		
	Samp					
Flow Rate	Vacuum (in Ho)		C	omments		
1	-24					
	-9					
	-4	20.5				
			-			
Total a	1903040	IAOfez	waters -	HOL 107 -DC		
Stert @ 00,3 0	ot. 00.2		owner	SINGTO DIE		
				SHOUTER TO		
	DTSC 1-L Summa SNP-32A Shows ained >0.5 inch durin If no, proceed with 1L Summa 2300 m L 300 m L/m 1313 1324 Flow Rate (mL/min) 200 m L/min ADM/min Flow Rate (mL/min) 200 m L/min	DTSC 1-L Summa SNP-3214	DTSC 1-L Summa Container ID: NP - 32 A Manifold ID: Temperature: ained >0.5 inch during a 24-hour period in the last 5 days? If no, proceed with collection of sample. If yes, contact PM 1L Summa Leak Test: 2300 L Sample Start Time: II. b win Start Vacuum: Sample End Time: End Vacuum: Field Measurements Purge Flow Rate Helium In-Line Helium in Shroud (%) 20.3 00.0 20.3 00.0 17. 4 00.0 19. 4 00.0 III. 4 00.0 Sample Collection Flow Rate Vacuum (in Hg) (%) Collection Flow Rate Vacuum Helium in Shroud (in Hg) (%) Collection Flow Rate Vacuum Helium in Shroud (%) Collection Flow Rate Vacuum (in Hg) (%)	DTSC Project #: 01-DTSC-007 1-L Summa Container ID: 5706 570-32 A Manifold ID: 7444 — Mani		

	22107		C	2 A	T Lula		
Date:	3/3/22		Sampler:	B. Assuro	CIMPLE		
Client:	DTSC		Project #:	01-DTSC-007			
Container Type:	1-L Summa		Container ID:	21237			
Sample ID:	8UP-39B		Manifold ID:	1471			
Duplicate Sample ID:	-						
Weather:	Showers	(light)	Temperature:	830			
Precipitation: Has it ra	ained >0.5 inch dur	ing a 24-hour perio	od in the last 5 days?	No 🚺 Yes 🔲 R	ainfall in.		
	If no, proceed with	o collection of sam	ple. If yes, contact PM				
Sampling Device:	1L Summa		Leak Test:	Shut-In 21", PASS			
Purge Volume:	2,600ml	,	Leak Check Compou	nd: Helium			
Purge Flow Rate:	200 me mi		Sample Start Time:	1358			
Purge Duration:	213min		Start Vacuum:	- 78			
Purge Start Time:	1343		Sample End Time:	1403			
Purge End Time:	1356		End Vacuum:	-5			
		Field I	Measurements				
		Tield I	Purge				
	Flow Rate	Helium In-Line	Helium in Shroud	Helium Ratio*			
Time	(mL/min)	(%)	(%)	(%)	Comments		
1343	300	203 0.1	18.0	~0.0			
1346	1	0.1	21.1	~0.5			
1249		0.1	17.3	~0.60			
1352		0.1	16.6	~0.6	DASS		
1356		0.0	18.4	0			
	um to shroud heliur	n is >5%, stop wor	k and notify project ma	anager before collec	cting sample.		
			le Collection				
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Co	omments		
1358	900	-78	17-1				
1359	1	-24	16.4				
Call	1	-20	20.2				
1401	ľ	-110	19.8	1			
1407		-10	280				
1403	1	-5	26.3				
1 1003							
Δ.		A. A	Notes		in the		
ADALYZER OF	T:O. L , AMB	CO TUB			w/ Ziptie Longer tobios		
					Longer TUBING		

Sampler's Signature:

Soil Vapor Field Measurement Log

Date:		3/3/22			Sampler:	B. Maplo / E. Male			
Client:		DTSC			Project #:	01-DTSC-007			
Container	Туре:	1-L Summa			Container ID:	7364	DY: 6069		
Sample ID:		SYPBIA SI	/P-33/	4	Manifold ID:	11470	Dab. 11188		
Duplicate S	Sample ID:	SUP 3314 - DUK							
Weather:			lostly a	inely	Temperature:	54°, F			
Precipitati	on: Has it ra			9	od in the last 5 days?	No Yes	Rainfallin.		
		If no, proceed wit	h collectio	n of sam	ple. If yes, contact PM				
Sampling [Device:	1L Summa			Leak Test:	Shut-In -12 ltg hold			
Purge Volu	ıme:	2,300 mL			Leak Check Compou				
Purge Flov	v Rate:	200 ml/m	h		Sample Start Time:	1445			
Purge Dura	ation:	11.6mi	n		Start Vacuum:	- 30	-28 DUP		
Purge Star	t Time:	1430			Sample End Time:	5	~3 bup		
Purge End	Time:	1442			End Vacuum:	1450	1449 Dup		
				Field I	Measurements				
					Purge				
Tir	Time Flow Rate Helio		1	In-Line %)	Helium in Shroud (%)	Helium Ratio* (%)	Comments		
1430		200 0.2		7	16.4	1.2			
1433		1 0.1		21.9	0.5				
1436		1.0			21.4	0.5			
1479					23.8	2.0			
1442		U	0.0		MM 23.0	0	DASS		
	in-line heli	um to shroud heliu	m is >5%,	stop wor	k and notify project m	anager before coll	ecting sample.		
				Samp	le Collection				
Time		Flow Rate (mL/min)	1 4	uum Hg) ກ √ ໂ	Helium in Shroud (%)		Comments		
1446	1446	200	-25	-12	18.3-1				
1447	1442	1	-90	-17	19.24	1			
1448	1448		-15	-12	20.01.				
1449	1449		-10	-8	21.3%				
1450	1449	(IV	-5	-4	200%				
				1					
					Notes				
nut' n	0.2 in	nn 2							
Dol · C	0.7 IN .	<i>00-5</i>							
15				- 1					

Date:	3/3/12		Sampler:	B. Angula /E	. Male		
Client:	DTSC		Project #:	01-DTSC-007			
Container Type:	1-L Summa		Container ID:	10415			
Sample ID:	5VP-33B		Manifold ID:	11457			
Duplicate Sample ID):						
Weather:	wo	othy Cloudy	Temperature: 55° F				
Precipitation: Has it	rained >0.5 inch duri	ng a 24-hour perio	od in the last 5 days?	No Yes R	ainfallin.		
	If no, proceed with	collection of sam	ple. If yes, contact PM				
Sampling Device:	1L Summa		Leak Test:	Shut-In			
Purge Volume:	2,600 mL		Leak Check Compou	nd: Helium			
Purge Flow Rate:	200 mel	Mn	Sample Start Time:	1518			
Purge Duration:	13 min		Start Vacuum:	- 30			
Purge Start Time:	1504		Sample End Time:	1523			
Purge End Time:	1517		End Vacuum:	-5			
		Field I	Measurements				
			Purge				
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments		
1507	200ml min	00.4	22.4 /	1.7.1			
1510		00.2	25.5 %	0.7%			
1513	7 1	00.2	21.1 1/	0.95 1.			
1516	L	00.2	22.2	0.90 %			
*If ratio of in-line he	lium to shroud helium		 k and notify project m	anager before collec	ting sample.		
	,		le Collection	1			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Co	omments		
1519	200 miluun	-25	23.3 1				
1520		-20	23.01.				
1521		-16	32.21.				
1522		-10	22.3%				
1523	L.L	-5	22.0·j.				
			Notes				
out:00.) In	· 00.\						
				40			

Indoor Air Sampling Form

Project Name:

Project Number: 3032.1001-5

Location: 26th +27th Ave, San Francisco

Sample ID	Canister ID	Manifold ID	Location at Site	Date	Time	Summa Vacuum (in. Hg)	Recent remodeling? (Yes/No)	Internal HVAC System (On/Auto/Off)	HVAC/Fan Airflow Observed? (Yes/No)	Comments
AQ-127 3	i 10983	22735	plan room	Start 2///23 Finish 2/2/23	0853	-37	No	*	No	
0AA-Y	11271	22175	pichetyle	Start 7///23 Finish 2/7/73	0857	-29 -5	No	* *	No	
[AGL-1727-	12128	6765	(Porrot)	Start 2//123 Finish 2/2/23	0903	-30	No	*	No	
IAQ-12#- 	8039	6359	Grand Flow Comme	Start U//123 Finish 2 2 23	0906	28 -5	No	*	No	
ZAQ-124 OUP		22743	V 31	Start UIIVS Finish UNIX	0813	-29	No	*	No	
2AQ-1245-	7937	6447	upper dony	Start 2/1/23 Finish 2/2/23	0844	-30 -3	Νo	*	No	
IAQ-Nol-	79 43	011796	Craw Livey rom	Start 2/1/23 Finish 2/2/3		-29	No	*	No	
Ma-INI-	11652	9450	Between	Start ンバンタ Finish レノン ア	0977	-30	No	*	No	
1AQ+184 2	8008	22558	Living	Start Zille 3 Finish SVINE	0952	-28	No	*	Ne	

* heating only

Indoor Air Sampling Form

Project Name: Police Credit Union

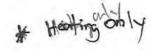
Project Number: 3032,1001.0

Location: 26th +27th Are Son Francisco

Sample ID	Canister ID	Manifold ID	Location at Site		Date	Time	Summa Vacuum (in. Hg)	Recent remodeling? (Yes/No)	Internal HVAC System (On/Auto/Off)	HVAC/Fan Airflow Observed? (Yes/No)	Comments
2		5320	roan Cooker	Start Finish	211/23		-36 -6	No	*	No	
[AQ-1275 	-12415	27319	Bestheen	Start	211/23	1410	-29	No	*	No	
7AQ-1175-	10870	5997	Grund Flow Office - Turlle	Start	2/1/23	1545	-30	No	. *	No	
				Start							
				Finish							
				Start							
				Finish							
				Start							
				Finish							
				Start							
-				Finish							
				Start							
				Finish							
				Start							
				Finish							

* heating only

Indoor Air Sampling Form


Project Name: Police Credit Union

Project Number: 3032, 1001.0

Location: 26m + 27m Ave San Francisco

2	2	7	5
P			

Sample ID	Canister ID	Manifold ID	Location at Site	Da	ate	Time	Summa Vacuum (in. Hg)	Recent remodeling? (Yes/No)	Internal HVAC System (On/Auto/Off)	Observed? (Yes/No)	Comments
1284 3	6567	6330	Grind Berlincon		211123		79	No	*	No	
310-1789 -1	1459		Chand		211/23 07/04/13	1000	·30	No	ተ	No	
OAAS	10849	0100	Bueryand Berch		21/23 02/042		-29	No	*	No	
FARMS	21528		Marth		2//123	1018	-29	No	² *	No	
TAQ~15	11063	22715	Grand Floor		21/123 040/kg	1023 0945	-30	No	*	No	
	10443	-	-Budyard Fere		2/1/23 02/0407	1030	-29	No	*	No	
1280	10846	5888	Living He)		2/1/23 oriovit	1305	-29 -8	No	*	No	
2-128°	21113	2274	bodisom		2/1/23	1310	-30	No	*	No	
				Start Finish				No	de	No	

Date:	2/2/23		Sampler:	7-1-1		
Client:	DISC		Project #:	01- DTSC-	007	
Container Type:	#L Smma		Container ID:	021508		
Sample ID:	SUP-28A		Manifold ID:	005972		
Duplicate Sample ID				•		
Weather:	Clonky		Temperature:	40°F		
Precipitation: Has it	rained >0.5 inch dur	ing a 24-hour perio	od in the last 5 days?	No Yes DF	Rainfall ir	
			nple. If yes, contact F			
Sampling Device:	1L Summa		Leak Test:	Shut-In		
Purge Volume:	2 300 mL		Leak Check Compound: Herm			
Purge Flow Rate:	200 m L/m	in	Sample Start Time:			
Purge Duration:	11.6		Start Vacuum:	-30		
Purge Start Time:	1008		Sample End Time:	1029		
Purge End Time:	1020		End Vacuum:	~5		
		Field N	leasurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* Comments		
100 8	200 mb/min	0.2	25.4	~ 190		
1007		0.3	21.3	~1%		
1010		0.4	25.6	~19/0		
1011		0.2	22.6	~1%		
1012	1	0.1	24.6	~1%		
*If ratio of in-line he	lium to shroud heliu	m is >5%, stop w	ork and notify project	manager before col	lecting sample.	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Сог	mments	
1021	200 ml/min	- 30	2 3.3			
1022		-25	22.5			
1023		-20	20.4			
1024		-17	21.5			
1025	1	-15	22.6			
1026		- 12	20.1			
			Notes			
1027		-10	28.6			
1028		1				
	1 1					
1028		-10 -7 -5	28.6 22,9 23:0			

Date:	2/2/23		Sampler:	W		
Client:	DTSC		Project #:	01-DTSC-	707	
Container Type:	IL SUAMA		Container ID:	972189		
Sample ID:	5UP-28B		Manifold ID:	006799		
Duplicate Sample ID	D:					
Weather:	Partly clow	ly	Temperature:	43°F		
Precipitation: Has it	rained >0.5 inch dur	ing a 24-hour perio	od in the last 5 days?	No Yes	Rainfall	
			nple. If yes, contact F			
Sampling Device:	1L Summa		Leak Test:	Shut-In ✓		
Purge Volume:	2,600 ML		Leak Check Compound: Huina			
Purge Flow Rate:			Sample Start Time:			
Purge Duration:	13 0:0		Start Vacuum:	- 28		
Purge Start Time:	1048		Sample End Time:	1107		
Purge End Time:	hol		End Vacuum:	-5		
3		Field M	leasurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud	Helium Ratio* Comments		
1048	200 ML/nis	0.1	27.4	n 0.4		
1099		0.1	28.4	~0.4		
1050		0.1	25.8	10.4		
1051		0.1	26.5	20.4		
1052		0.1	21.7	20.9		
*If ratio of in-line he	lium to shroud heliu	m is >5%, stop w	ork and notify project	manager before co	llecting sample	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Co	omments	
1102	ZOOML IM:b	-28	18.5			
1103	1	-23	20.1			
1104		-18	21.2			
1105		-13	18.3			
1106		-8	21.3			
1100		- 5	20.4			
114/			Notes	1		
			NI - 4			

Sampler's Signature: Jun Talin

Client: Container Type: Sample ID:	2/1/23 DTSC 16 Sunna		Project #:	01-0140-0	707	
Sample ID:	16 Summa			01-0746-007		
			Container ID:	010656		
Dunlingto Comple ID	5 VP-29A		Manifold ID:	011123		
Duplicate Sample ID:						
Weather:	Sunny		Temperature:	53°F		
Precipitation: Has it rai		ing a 24-hour perio		No Yes R	ainfall	
	of no, proceed with	n collection of san	nple. If yes, contact P	'M.		
Sampling Device:	1L Summa		Leak Test:	Shut-In 🗸		
Purge Volume:	2,300 ML		Leak Check Compou	ind: Hurna		
Purge Flow Rate:			Sample Start Time:	1000		
Purge Duration:	11.60.0		Start Vacuum:	-30		
Purge Start Time:	1541		Sample End Time:	1559		
Purge End Time:	1553		End Vacuum:	-5		
		Field M	leasurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
1541	200mL/min	0.1	27.4	~ 0.4		
15 42		0.1	40.6	~ 0.4		
1543		0.1	36.8	20.4		
1544		0.1	29.8	~ 0.4		
1545	1	9.1	19.4	~ 0.4		
*If ratio of in-line heliu	m to shroud heliu	m is >5%, stop w	ork and notify project r	manager before colle	ecting sample.	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Com	nments	
15 54	Zoomlinin	-30	27.6			
1555		-25	25.3			
1556		-20	20.9			
1557		-15	27.3			
1558		-10	26.4			
1559	V	-5	26.5			
			Notes			

Date:	2/2/23		Sampler:	*		
Client:	DTSC		Project #:	01- DTSC -00	7	
Container Type:	1 L gunna		Container ID:	00 317 3		
Sample ID:	5UP-29	3	Manifold ID:	007462		
Duplicate Sample ID:						
Weather:	Printly Com	dy	Temperature:	43°F		
Precipitation: Has it ra	ained >0.5 inch	during a 24-hour peri	od in the last 5 days?	No Yes F	Rainfall in.	
	If no, proceed	with collection of sar	nple. If yes, contact F	PM,		
Sampling Device:	1L Summa		Leak Test:	Shut-In 🗸		
Purge Volume:	2,600	2,600		und: Helina		
Purge Flow Rate:	200AL/	in	Sample Start Time:	1220		
Purge Duration:	13 min		Start Vacuum	-28		
Purge Start Time:	1205		Sample End Time:	12 25		
Purge End Time:	1218		End Vacuum:	-5		
		Field N	leasurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
1205	200ALINI	0.0	24. 3	9		
1206		0.0	29.3	0		
1207		0.0	24.1	0		
1208		0.1	79.7	~ 0.33		
1209	V	0.0	25.3	9		
*If ratio of in-line heli	um to shroud h	elium is >5%, stop w	ork and notify project	manager before coll	ecting sample.	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Cor	nments	
1220	2000/10:	, -28	18.3			
1221		-23	20.5			
1222		-18	26.9			
1223		-12	73.4			
1224		- 8	25.3			
1225	V	- 5	22.3			
			Notes			

Sampler's Signature: how light

Date:	2/2/23		Sampler:	to	
Client:	DTSC		Project #:	OI-DISC	- 007
Container Type:	11 Summa		Container ID:	00 8 917	
Sample ID:	549-30A		Manifold ID:	011460	
Duplicate Sample ID:	Sup- 30A-D	np	Dup container ID: 012432		
Weather:			Temperature:		
Precipitation: Has it ra	ained >0.5 inch duri	ng a 24-hour perio	od in the last 5 days?	No Yes	Rainfall in
			nple. If yes, contact F		
Sampling Device:	1L Summa		Leak Test:	Shut-In 🗸	
Purge Volume:			Leak Check Compou	7	
Purge Flow Rate:	200 ML/M	in	Sample Start Time:	13-5	
Purge Duration:	11.6			-28	
Purge Start Time:	1251		Start Vacuum: Sample End Time:	/317	
Purge End Time:	1303		End Vacuum:	-6	
		Field M	easurements		
			Purge		
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments
1251	Znamynia	0.0	33.4	0	the To chasge
1252		0.0	28.9	0	Helium meter
1253		0.0	36.2	0	batteries
1301		0.0	43.2	0	
1302	V	0.0	39.3	0	
*If ratio of in-line heliu	um to shroud heliur	n is >5%, stop wo	ork and notify project		ollecting sample
			e Collection		
Time	(mL/min)	(in-Hg)	Helium in Shroud (%)	Co	omments
1305	-28	200 mL/min	26.4		
1307	22		2.5.8		
1308	-20		22.4		
(310	-()		20.0		
1313	-13		21.0		
13/5	-11		24.9		
13 (4)	-9		16.7		
1316	- 3	-	20.4		
1319	~6		21.2		
41.60			Notes	Ť	

Sampler's Signature: The Mylan

Date:	02/02/23		Sampler:	BE	
Client:	DTSC		Project #:	01- DTS c - 00	ר
Container Type:	1-L Summa		Container ID:	006NIO	
Sample ID:	6 UP - 30B		Manifold ID:	011 460	
Duplicate Sample ID:	-				
Weather:	Sunny		Temperature:	41°F	
Precipitation: Has it ra	ained >0.5 inch dur	ing a 24-hour perio	od in the last 5 days?	No Yes	Rainfall in.
			ple. If yes, contact F		
Sampling Device:	1L Summa		Leak Test:	Shut-In J	
Purge Volume:	2,300 mL		Leak Check Compo	und: Holium	
Purge Flow Rate:	200 m/min		Sample Start Time:	12 38	
Purge Duration:	11.6 min			-29	
Purge Start Time:	12 24		Sample End Time:	12 43	
Purge End Time:	12 36		End Vacuum:	-5	
		Field M	easurements		
			Purge		
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments
1227	200	41.9 0.0	21.8	0	
12 28		26/4 0.0	26.4	Ð	
12 29		18M 0.0	18,4	0	
12 31		1014 0,0	N.01	0	
12 32	Ţ	3.2 0.0	3,2	α	
*If ratio of in-line heliu	um to shroud heliu	m is >5%, stop wo	ork and notify project	manager before co	llecting sample.
		Sampl	e Collection		
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Co	mments
1238	200	-29	22.5		
12 39		-25	26.5		
12 40		-20	22.4		
12 41		-15	24.3		
12 42		-10	20.6		
12 43	L	-5	8.0		
			Notes		

Container Type: Sample ID: Duplicate Sample ID: Weather: Precipitation: Has it rai	OTSC I-L Summa SVP- 31A		Project #: Container ID:	01-DTSC-007		
Sample ID: Duplicate Sample ID: Weather: Precipitation: Has it rai			Container ID:	00 5461		
Weather: Precipitation: Has it rai	5VP-31A			00 5461		
Precipitation: Has it rai	14			0 1481		
Precipitation: Has it rai	Supply		Temperature:	33°F		
	ned >0.5 inch duri	ng a 24-hour perio	od in the last 5 days?	No Yes Rai	infall i	
	f no, proceed with	collection of samp	ple. If yes, contact PM			
Sampling Device: 1	L Summa		Leak Test:	Shut-In		
Purge Volume:			Leak Check Compou			
Purge Flow Rate:	200 M. /min		Sample Start Time:	0958		
Purge Duration:	11.6		Start Vacuum:	-29.0		
Purge Start Time:	0945		Sample End Time:	1002		
	0956		End Vacuum:	-5.0		
		Field N	Measurements			
		110.01	Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
0945	2 00 ml/min	0,4	24.6	11.2%		
0946		0.4	22.9	1.2%		
0947	1	0.4	21.7	11.290		
0448	1	0.4	22.3	4.2010		
0949	V	0.4	22.5	71.7%		
*If ratio of in-line helium	n to shroud helium			nager before collecti	ng sample.	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Con	nments	
0968	2000/hih	-29.9	33, 3			
0959		-20.0	30.8			
1000		-15.0	18.8			
lool		-10,0	34.9			
1002	4	-5.0	20.2			
			Notes			

Date:	2/1/23		Sampler:	W		
Client:	DISC		Project #:	01- DTSC - 007		
Container Type:	1-L Suma		Container ID:	022548		
Sample ID:	5UP - 3ZA		Manifold ID:	00 7461		
Duplicate Sample ID:						
Weather:	Sunw		Temperature:	45° F		
Precipitation: Has it ra	ained >0.5 inch dur	ing a 24-hour perio	od in the last 5 days?	No Yes R	tainfallin.	
			nple. If yes, contact F			
Sampling Device:	1L Summa		Leak Test:	Shut-In 🗸		
Purge Volume:	2,300 ML		Leak Check Compound: Helison			
Purge Flow Rate:	200 ML M:		Sample Start Time:	1108		
Purge Duration:	11.6 min			-30		
Purge Start Time:	10 54		Sample End Time:	1112		
Purge End Time:	1106		End Vacuum:	- 5		
		Field M	leasurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
10 54	200 ML /Min	0.0	35.4	0		
1055		0.0	16.7	9		
1056		0.0	22.4	9		
1057		0.0	15.7	0		
1058	1	0.0	17.3	9		
*If ratio of in-line heli	um to shroud heliu	m is >5%, stop w	ork and notify project	manager before coll	ecting sample.	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Con	nments	
1108	200 ML/Ais	-30	35.4			
1109		-25	17.8			
116		- 15	25.4			
11.11		-10	16.4			
1112	1	- 5	31.9			
			Notes			

Date:	02/01/23		Sampler:	75	
Client:	DTSC		Project #:	01-DTSC-007	
Container Type:	1-L Summa		Container ID:	0/0 752	
Sample ID:	SUP - 32B		Manifold ID:	00 68 24	
Duplicate Sample ID):				
Weather:			Temperature:		
Precipitation: Has it	rained >0.5 inch du	ring a 24-hour perio	od in the last 5 days?	No Yes Rai	infalli
	If no, proceed wit	h collection of sam	ple. If yes, contact PM		
Sampling Device:	1L Summa		Leak Test: Halin V		
Purge Volume:			Leak Check Compound: Helium		
Purge Flow Rate:	200ML/M	86	Sample Start Time:	1151	
Purge Duration:			Start Vacuum:	-28	
Purge Start Time:	1137		Sample End Time:	1156	
Purge End Time:	11 50		End Vacuum:	-5	
		Field (Measurements		
			Purge		
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments
11 38	0	0	21.3	0	
11 39		()	31.1	0	
11 NO		0	22.3	0	
11 41		C	17.2	0	
11 42		1	17.9	0	
*If ratio of in-line he	lium to shroud heliu	-	k and notify project ma	anager before collecti	ng sample.
			le Collection		
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Con	nments
[151		-28	21.3		
(152		- 23	15.4		
1153		-18	30.7		
1154		-13	22.7		
(155		-8	15.4		
		-5	27.9		
1156		2	1		

Sampler's Signature:

Soil Vapor Field Measurement Log

Date:	2/1/23		Sampler:	to		
Client:	DTGC		Project #:	01-0T56 -		
Container Type:	IL GUADA		Container ID:	005631		
Sample ID:	5UP-33A		Manifold ID:	007860		
Duplicate Sample ID	5 VP - 33 A .	Dup	Dupcowhiter	010632		
Weather:	Sunny		Temperature:	520/		
Precipitation: Has it r	rained >0.5 inch dur	ing a 24-hour peri	od in the last 5 days?	No Yes I	Rainfall	
			nple. If yes, contact P	M.		
Sampling Device:	1L Summa		Leak Test: Shut-In ✓			
Purge Volume:	Helium		Leak Check Compound: Helius			
Purge Flow Rate:	200 MI (min			Sample Start Time: 1323		
Purge Duration:	1710 11.6		Start Vacuum:	-28		
Purge Start Time:	1310		Sample End Time:	1330		
Purge End Time:	1322		End Vacuum:	- 6		
	1	Field M	leasurements			
		17.1010.10	Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
1310	200 ML/Mih	0.0	17.8	0		
130		0.0	22.4	0		
1312		0.0	40.3	0		
(3/3		0.0	19.81	0		
13 (4	1	9.0	36.8	0		
*If ratio of in-line hel	ium to shroud heliu	12.32	ork and notify project i	manager before co	lecting sample.	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Со	mments	
1323	2 00 mynin	- 28	22.9			
1324		-25	38.2			
1325		-22	28.5			
1326		-18	28.4			
1327		-15	22.8			
	1	-12	15.3	-		
1328			M .			
1328			Notes			
1328		- 9	Notes 29.7			

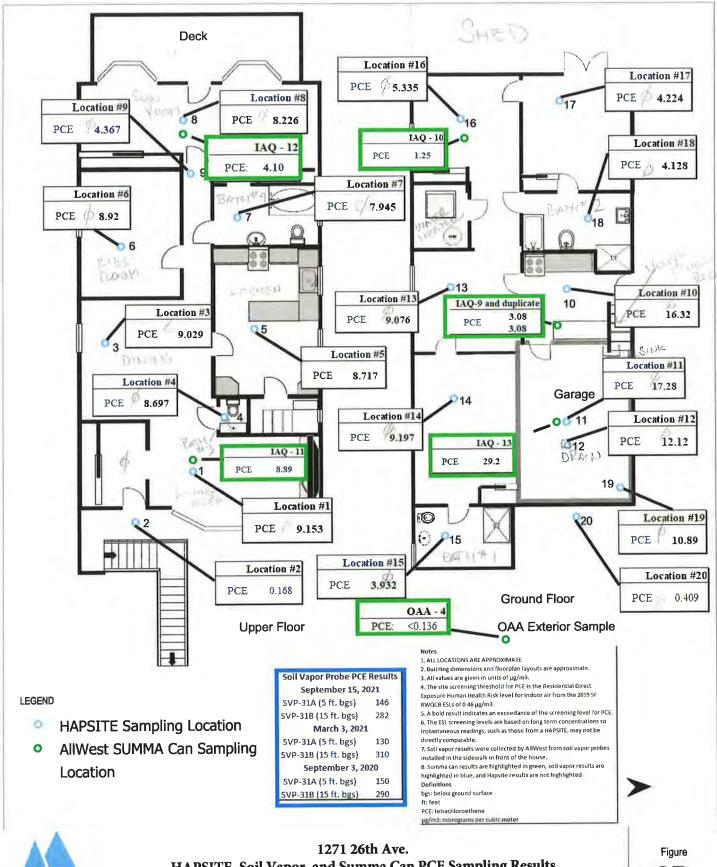
Date:	2/1/23		Sampler:	To		
Client:	DTSC		Project #:	01-0196-007		
Container Type:	16 Summa		Container ID:	022260		
Sample ID:	5VP-33B		Manifold ID:	0 11485		
Duplicate Sample ID:						
Weather:	SNAAY		Temperature:	52-6		
Precipitation: Has it ra	ained >0.5 inch duri	ng a 24-hour perio	od in the last 5 days?	No Yes R	ainfallin	
	If no, proceed with	collection of san	nple. If yes, contact F	PM.		
Sampling Device:	1L Summa		Leak Test:	Shut-In 🗸		
Purge Volume:	2,600 ML	2,600 ML		und: Hainm		
Purge Flow Rate:	ZOOMLININ		Sample Start Time:	M11		
Purge Duration:			Start Vacuum:	- 30		
Purge Start Time:	1357		Sample End Time:	1416		
Purge End Time:	1410		End Vacuum:	-5		
		Field M	leasurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
1357	200 milmin	0.0	16.4	0		
1358)	0.0	15.8	0	-	
1359		0.0	21.0	9		
1400		0,0	16.7	0		
1401	1	0.0	18.6	0		
*If ratio of in-line helic	um to shroud heliu	m is >5%, stop w	ork and notify project	manager before coll	ecting sample.	
			le Collection			
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Con	nments	
1411	200 M/min	-30	24.6			
1412	1	-25	18.0			
14 13		- 20	28.7			
1414		-15	16.2			
1415		-10	17. 7			
1416	1	-5	28.5			
			Notes			

Date:	2/2/23		Sampler:	Eric T. / to		
Client:	DTSC		Project #:	01 - DTGC -00		
Container Type:	1 6 Summa		Container ID:	00 8512		
Sample ID:	V10- 1271-	1	Manifold ID:	00 7727		
Duplicate Sample ID						
Weather:	Particions	,	Temperature;	55*		
Precipitation: Has it r	ained >0.5 inch	luring a 24-hour peri	od in the last 5 days?	No Yes DF	Rainfall in.	
			mple. If yes, contact i			
Sampling Device:	1L Summa		Leak Test:	Shut-In 🗸		
Purge Volume:	600 M		Leak Check Compo			
Purge Flow Rate:	200 ML/1	n.'h	Sample Start Time:	1341		
Purge Duration:	3 Min		Start Vacuum:	-30		
Purge Start Time:	1339		Sample End Time:	1346		
Purge End Time:	1341		End Vacuum:	-5		
		Field M	leasurements			
			Purge			
Time	Flow Rate (mL/min)	Helium In-Line (%)	Helium in Shroud (%)	Helium Ratio* (%)	Comments	
1339	200 ML/M	0.0	20.0	0		
1340	200	0.0	32.0	0		
1341	200 1	9.0	24.9	9		
*If ratio of in-line heli	-	Samp	ork and notify project	manager before col	lecting sample.	
Time	Flow Rate (mL/min)	Vacuum (in Hg)	Helium in Shroud (%)	Comments		
1341	200 ml/n	in -30	29.0			
1342	200	- 22	23.6			
1343	200	-17	27.7			
1344	200	-12	22.0			
1345	200	-7	19.0			
1346	200 +	- 5	15.0	ale and a second		
			Notes	-		

Appendix C Building Survey and Interview Form

Indoor Air Source Screen Form

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor forming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.


Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.

Site Information	Input
Building Address:	1271 26th Ave
Site/Facility Name:	Residential
Screening Event Date:	3/2/22
Screening Event Time:	0810
Event Weather Conditions:	Mostly Cloudy ; 49°F
Name of Person(s) Conducting Sampling:	B. Angulo and Erin Male
Company Conducting Sampling:	RULD Environmental Solutions INC.
Field Instrument Type ¹ (List All):	PP6 PAG 3000
Instrument Calibration Date:	3/1/22

^{1 -} Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Indoor Air Source Screen Form

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
GARAGE	-BREATHING BONE (BZ)		\$	dog	FAULDER DOLLAGENT, BLUE, GRE
S.21	- NEAR CRAUS		()		PALLONG MEDIUM
	- WELL SLUX		4		
CITCHE IA	- ERG- IT EN FINIE		d)		
BED GRANDED FLOOR			Ø		
BATH #	- 47		d		
BATH #D_	- BZ		Ø		POR TUNE
	- SHIX/DEVANUE		d		<i>C</i>
THE AREA	- BZ		Ø	:=/.	PANTERIE WOLL KINDS
UPPLY I LOOK:	-				1 7 POSSEL VINCENSIL ON SEC
Y JOSEPH W	- 33		¢.		C BALTINGS
	- SHE BRAIL		Ø		
BAH =3	- 157		ø		
ASETTE	- Since/SinceR		0		
Lysis bears	- 67		06		
Linear Took	- 02		á		
LI CALL	- Fleative News		05		
KIDS BEDROOM	- 87		Ø.		
1 4 1 4 2 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	- 77		al		
	- SHAL		ď		
	- SHIWICR		13		
SUL ROOM	- 87		d		
OND TROOP!	- VENTS		1.		
BACK VARD	- W. E. CX		6		
THED	- B7 (AFTER REMOVED		- 2		
One y	ACETABLE & TALKET		- 3/2		
IL IN SHED	_		1047		GLUE FOR VILLEL FLOOPING
IN OMED			42 - 1		GUAL TOW VINSIE TEODERS
				-	

HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 14 and 15, 2021 San Francisco, CA

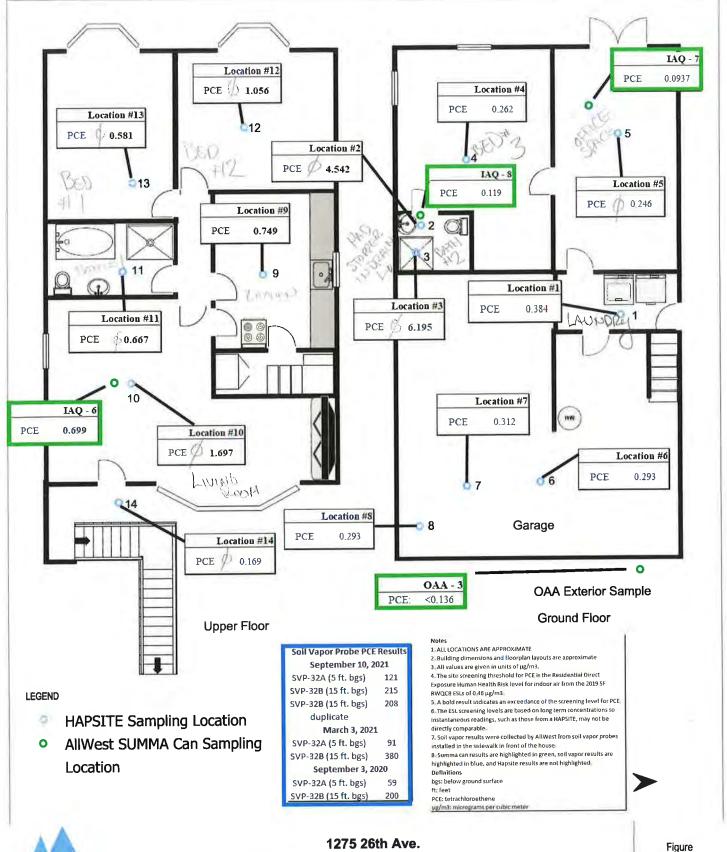
DATE: 10/20/2021

CONTRACT NO.: 21-073A

Indoor Air Source Screen Form

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor forming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.


Site Information	Input
Building Address:	1275 264 AUG
Site/Facility Name:	RESIDENTIAL
Screening Event Date:	
Screening Event Time:	1115
Event Weather Conditions:	Mostly Clavely; 50°F
Name of Person(s) Conducting Sampling:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Company Conducting Sampling:	KHO FUNGORIMERIANT DEOLUGICA
	PONTAE 3MM
Instrument Calibration Date:	

^{1 -} Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Indoor Air Source Screen Form

FRAUND FRAID UPT I FRUGE

- LIVING ROOM - KITCHED - BOD # 1	- BREATHING ZONG - 57 - 57 SINK - 57 SINK SHOWER		0)	PPB	Identified Near Samp
- MINE VOOR - KITCHED - BED#	- 157 SHILL SHOWER		6		
- B(D 4)	- 157 [2] HE SHOWER		103		
- B(p-1)	- DE LOTHE STRANGE		7.		
- D(D	- 777		Ø Ø		
	- 67	1	8		
-LAUNDEN	17		Ø		
- GREALRIC	167		Ø		PAUL WARRESCHAFT
- 61 1413	- Wor		Ø.		S. S. P. S.
- Etgeo	- D7		Ø		
- TANIET	- 137		d		
- []	- SINK		8		
- 4	- SHAWAL		d)		
4	-				
-	-				
-	•				
-	-				
•					
-	-	-			
	_				
-	-				7
-					
-	-				
-	-				
-	-				
-	-				
-	-				
-	-				

1275 26th Ave.

HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results

September 9 and 10, 2021

San Francisco, CA

DATE: 10/20/2021

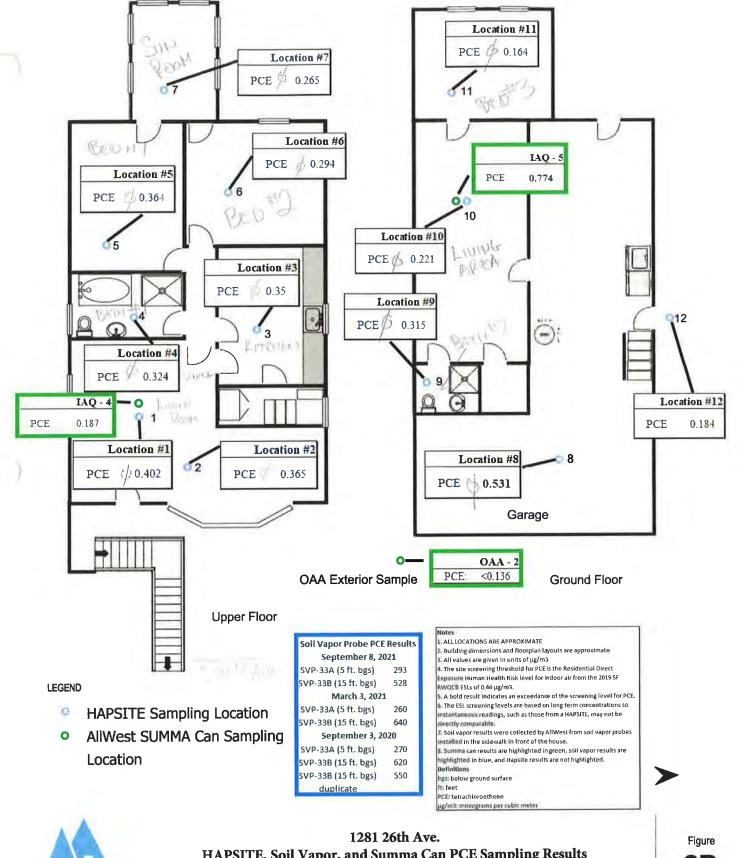
2C

CONTRACT NO: 21-073A

Indoor Air Source Screen Form

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor forming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.


Site Information	Input
Building Address:	1281 2644 AVE
Site/Facility Name:	RASIDENTAL
Screening Event Date:	3/2/27
Screening Event Time:	1000
Event Weather Conditions:	MOSTLY Choloy, 50°F
Name of Person(s) Conducting Sampling:	
Company Conducting Sampling:	RMD ENURONHENTAL SOLUTIONS
Field Instrument Type ¹ (List All):	PPP RAE 3000
Instrument Calibration Date:	3/1/22

^{1 -} Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Indoor Air Source Screen Form

1784 1000

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
- Limb Ayer	- BROWTHING POWE (88)		77	Vals.	
- Dinamo Room	- 977		()		
- K 17(411 1-)	- W		1/2		
- BATH TI	- D/		(2)		
- Bto #1	- <u>1</u> 27				
- KID +2	- BZ		(f		
- CIN 200 WI	- 82		<i>A</i>	,	
-PACIL	- 077		<u> </u>	1	CAULKING, CAR FUEL INTECT
ADMA MULICIPALITY	- Sink .		7		Lind-110; CLUMSERS
-13/1H #2 <u>U</u>	- 1/2/3/13K				
- Bapara	- 152		0		
- LIVING ARTA	- B2.		0		
-	-				
-	-				
-	-	-			
-	-				
-	-				
-	-		-		
-	-	-			
•	-				
•	-				
-	-				£
10-	-	-			
-	-				
	-				
	-				
-	•	-			
	-				
•	-	_			
-	-				
ant					

HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 7 and 8, 2021 San Francisco, CA

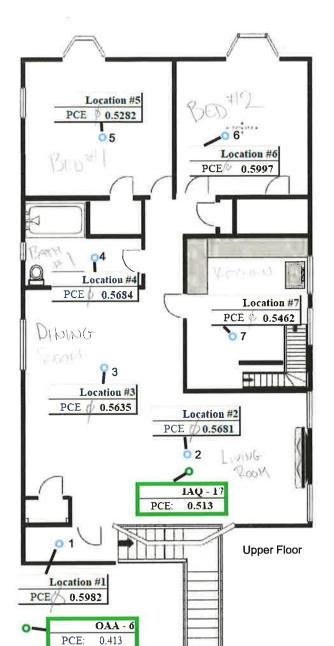
DATE: 10/20/2021

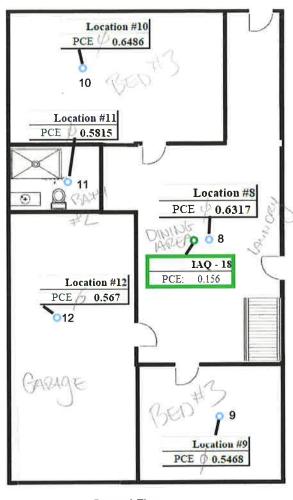
CONTRACT NO.: 21-073A

Indoor Air Source Screen Form

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor forming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.


Site Information	Input
Building Address:	1276 2714 AUE
Site/Facility Name:	RESIDENTIAL
Screening Event Date:	
Screening Event Time:	1205
Event Weather Conditions:	MOSTLY CLOUDY, 50°F
Name of Person(s) Conducting Sampling:	O. ANGULY E. MILE
Company Conducting Sampling:	KND FUNGOTINED IN SOFULION?
Field Instrument Type ¹ (List All):	00b Rap 3000
Instrument Calibration Date:	314137


^{1 -} Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

17569 PL AVE

Indoor Air Source Screen Form

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
- LIVING ROALA	- BRLATHING ZONE (BY)		6	(m) (-)	January 100 Odnipi
- DINING ROW	- BZ		\ds		
- 11	- '511		8		
- Beneral	- RA SHOW SHOWER		S		
- Pa 1,21	· 137		$\langle r \rangle$		
- 13k w 217	- BZ		'of		
- BCO世3	- 62		05		
- DATES AND	- 172		Ch.		BAD, CLORDSENS
- GREATE	· 137		C/		
- 6WH ALS	- V, */	1 1 1 1	U		
- P	- Sink		B		
- 41	-SHOWER		d		
- Benet m	- BZ		ф		
-	-		-1.		
-	-				
-	-				
-	-				
-	•				
•	-				
-	-				
•	-	1			
-	-				
-	-				
-	-				
-	-				
-	-				
	-				
	-			1	
	-				

Ground Floor

LEGEND

HAPSITE Sampling Location

OAA Exterior Sample

AllWest SUMMA Can Sampling Location

Soil Vapor Probe PCE Results October 1, 2021 SVP-28A (5 ft. bgs) 115 SVP-28B (15 ft. bgs) 171 September 10, 2021 SVP-28A (S ft. bgs) 109 SVP-28B (15 ft. bgs)

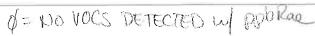
March 2, 2021 SVP-28A (5 ft. bgs) SVP-28B (15 ft. bgs) September 2, 2020

SVP-28A (5 ft. bgs) 120 SVP-28B (15 ft. bgs)

- 1, ALL LOCATIONS ARE APPROXIMATE
- 2. Building dimensions and floorplan layouts are approximate.
 3. All values are given in units of µg/m3.
- 4. The site screening threshold for PCE is the Residential Direct
- Exposure Human Health Risk level for Indoor air from the 2019 SF RWQCB ESUs of 0,46 µg/m3.

 5. A bold result indicates an exceedance of the screening level for PCE.
- 6. The ESL screening levels are based on long term concentrations so instantaneous readings, such as those from a HAPSITE, may not be directly comparable.
- 7, Soil vapor results were collected by AllWest from soil vapor probes installed in the sidewalk in front of the house. 8. Summa can results are highlighted in green, soil vapor results are
- highlighted in blue, and Hapsite results are not highlighted. Definitions
- bgs: below ground surface ft: feet
- PCE: tetrachloroethene

127627Th Ave.

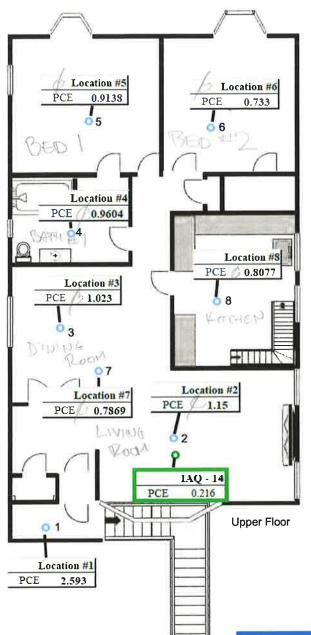

HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 30 and October 1, 2021 San Francisco, CA

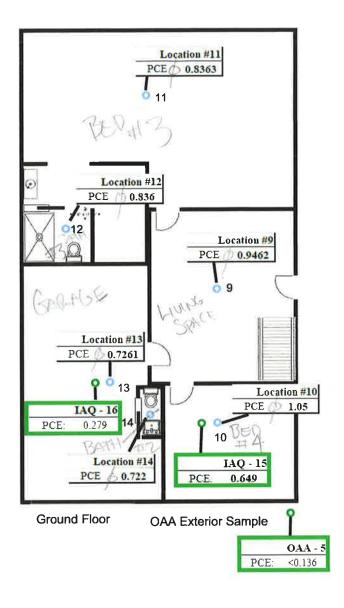
FLEVATE

DATE: 10/20/2021

CONTRACT NO.: 21-073A

Figure


This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor forming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.


Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.

Site Information	Input
Building Address:	1280 27 M AUE
Site/Facility Name:	ROSI DENTIAL
Screening Event Date:	3/1/22
Screening Event Time:	12:26
Event Weather Conditions:	MOSTLY CLOUDY, 50°F
Name of Person(s) Conducting Sampling:	
Company Conducting Sampling:	71. x 2% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Field Instrument Type ¹ (List All):	TIVE KAPLE I VAN
Instrument Calibration Date:	574 1 453 2

^{1 -} Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
- INING ROOM	· Vitality of Box		do	PPB	Taonimoa roa: bampio
- MOON)(KOON	· 87		6		
· KITCHELL	- B7		(d)		
- Kantysovi i I	- DR/SIPY/SHOW		8		
- Bepati	- 62		*C5		
-CUDAZ	· (2		d		
- Littere N	- UNDER SINK		Ø		
- LIVING YOUR	1. 172		Ø		
-Gayalit	- 15 ½		19		OLD PRINSI CAUS
- 1 f	-DUTTE MILITISHIS		3		OLD PARIST CALLS
PHINE -	-UUDUW MILITYSHYL		C.		
-BO# 3	- BZ		(?)		
150 H	- 62		rh.		9
-BAH #3	- DZ/SINK		H		Not I POLLIN KE MOVER
	-				
	-				
•	-				
	-				
•	-				
	-				
	-				
	-				
	-				
	-				
	-				
	-				
	-				
	-				
	-				

LEGEND

- **HAPSITE Sampling Location**
- AllWest SUMMA Can Sampling Location

Soil Vapor Probe PCE Results October 1, 2021 SVP-29A (5 ft. bgs) 48.1 SVP-29B (15 ft. bgs) 0.588 September 15, 2021 SVP-29A (5 ft. bgs) SVP-29B (15 ft. bgs) 194 March 2, 2021 SVP-29A (5 ft. bgs) 70 SVP-29B (15 ft. bgs) 280 September 2, 2020 SVP-29A (5 ft. bgs) 73 SVP-29B (15 ft. bgs)

- 1, ALL LOCATIONS ARE APPROXIMATE
- 2. Building dimensions and floorplan layouts are approximate.
- 3. All values are given in units of μg/m3

 4. The site screening threshold for PCE is the Residential Direct Exposure Human Health Risk level for indoor air from the 2019 SF RWQCB ESLs of 0.46 µg/m3
- 5, A bold result indicates an exceedance of the screening level for PCE, 6. The ESL screening levels are based on long term concentrations so Instantaneous readings, such as those from a HAPSITE, may not be directly comparable.
- 7. Soil vapor results were collected by AllWest from soil vapor probes installed in the sidewalk in front of the house.
- 8. Summa can results are highlighted in green, soil vapor results are highlighted in blue, and Hapsite results are not highlighted.
- bgs: below ground surface
- PCE: tetrachloroethene

128027Th Ave.

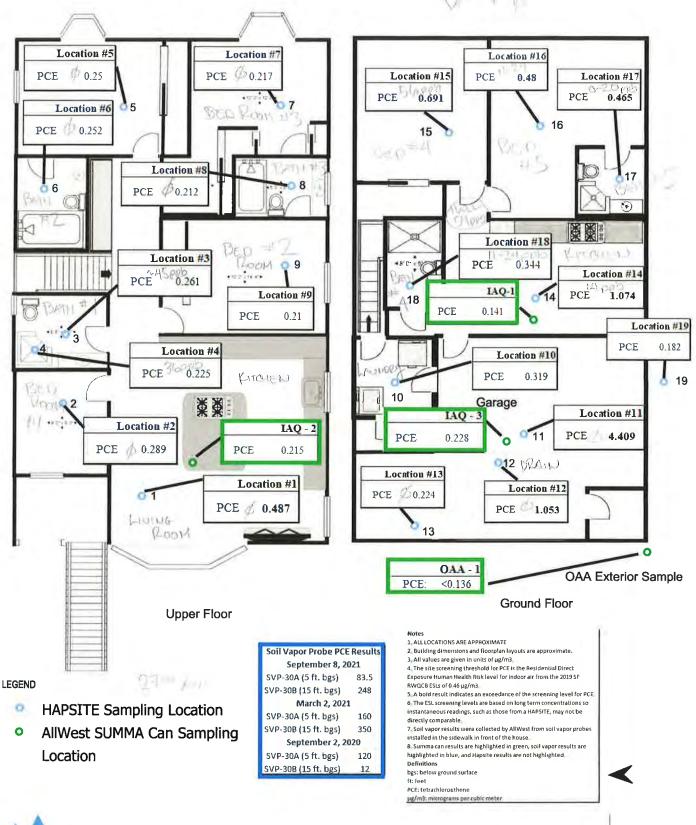
HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 30 and October 1, 2021 San Francisco, CA

Figure

CONTRACT NO.: 21-073A

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor forming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.


Site Information	Input
Building Address:	1284 2744 AUE
Site/Facility Name:	Residental
Screening Event Date:	3/2/22
Screening Event Time:	0915
Event Weather Conditions:	
Name of Person(s) Conducting Sampling:	
Company Conducting Sampling:	PHD ENVIRONMENTAL SOLUTIONS
Field Instrument Type ¹ (List All):	
Instrument Calibration Date:	

 ^{1 -} Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID),
 Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

11811 DW FAVE

Indoor Air Source Screen Form

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
- Liano Prost	- BROAMING JOHLES		Of	PPB	
- Ynouth	- B7		Ø		
- Par Vary	- 655		Ø		
· Mar - 10 2	- 88		C∱		BATHROOM CLEADERS
- DEL POOR 13	- Bt		- M		
- BATH #1	- BZ ISINE SHOW	2	1		
· BAN #3	- BE SAIK/SHOWER	a. 1	0		
PATHET	- DRAW		45-85		
	-SHOWER		36		
	- BREATHING 200E		×415		
LAUNDRY LOOK	- 87		C8		
J	- LIEAR DETERMENTS		d		
-GARAGE	- 1672		φ.	(Del MECTON FLUID
•	- ORAN		6		Ammony Cleaners, 14301 SPRAY
- The water	- NEAR CLEADING		119	1	PROPAGE TOXCH, Publimentin
STOCKEL RYEA	- MODE CLANIERS		360		Louring Spales, GUMO
-LYNEXT TO ENCHE	-				Oven champe, CAUPERT
- 13×111 44	- BZ (A. M. P. ROMONE DR	OPICES \	11-24		PRINTED RALEITAN
- KITCHIEL	- 87		14		r-
· BEDROOM =4	- 952		51-56		PAINTS FOR CLAFTS
- HALL	- 67		5		CRUFTS W PRINT MIBELUC
-BICF5	- B7.		11-2-1		
- BONIES	- OF /SINC				
-BACK-LARD	- 6013/DE		d		
•	-		1		
	-				
	-				
1	_				
	-				
	-				

1284 27th Ave. HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 7 and 8, 2021 San Francisco, CA

DATE: 10/20/2021

Figure $\mathbf{D}\mathbf{A}$

CONTRACT NO : 21-073A

Type in or select answers from drop-down lists in the righthand column.

Upload answers to GeoTracker database for criteria marked with an asterisks (*).

See Table 1 in the *Guidance on Uploading Vapor Intrusion Information into GeoTracker*(Attachment 4 of Supplemental Vapor Intrusion Guidance) for a description of Building

Design Type input choices.

Person Conducting Survey	Input
Name:	Eric Theil
Company:	RMD E.S.
Phone Number:	650 450 6639
Email:	etheil @ rndesnet

Building Contact Information	Input
Name:	Leyla Alieva and Shore Hill
Contact Title:	- Occupant
Phone Number:	
Email:	alievaleilae gnavl. com
Building Occupant Interviewed?	-

Building Information	Input
Date of Building Survey (dd/mm/yy):	1/31/23
*Building Name:	Residetial
*Building Address (Street, City):	1271 26th Ave. SF, CA, 94122
Coordinates for Center of Building (Latitude, Longitude; decimal degrees to 0.00000):	37. 76170° N, 122.46334°W
*Building Location Onsite/Offsite with respect to Site/Facility:	- Offste
*Year Built (yyyy; approximate if unsure):	1924
*Building Occupants:	- 6

Building Dimensions	Input
*Bullding Footprint Area (within enclosed space; square feet [Ft2]):	~120
Building Dimensions (at grade; feet by feet):	~
*Ceiling Height of Ground Floor (Feet):	~ 91
*Number of Floors (excluding the basement):	2

Building Design	Input
*Building Design Type:	- Single Unit residential
Has the design been modified?	d
*Foundation Type:	- 5125
*Building Vapor Intrusion Mitigation System:	
*Heating, Ventilation, & Air Conditioning (HVAC) System:	- Heating Only
Type of Energy Used in Building?	- Con (Water Hoster, France, Coking) + Electricity
Energy Primarily Used For?	- Space Heading
Number of Units for Multi-Unit Buildings:	1
Number of Rooms (average per unit for multi-unit buildings):	17
Number of Exterior Doors:	4+ garage down
Number of Elevators:	
Number of Active Exhaust Fans (e.g., kitchen/bathroom):	6
Chimney or Other Vertical Draft Source?	- 1 (den't use)

Building Slab	Input
Slab Thickness (inches; approximate if unsure):	13611
Large Slab Penetrations (> 1 Foot Diameter):	- Folour Drun Genge (219)
Soil Type 0 to 3 Feet Below Building:	- Sandy?
Evidence of moisture intrusion from Below Slab?	- 00

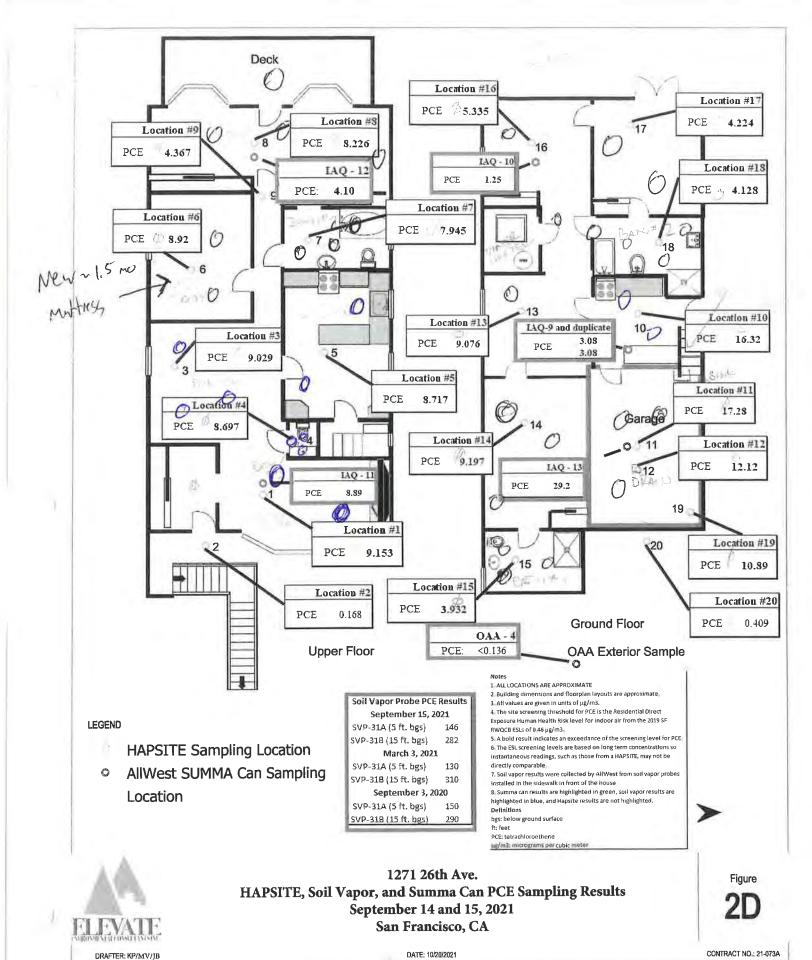
Building Windows	Input
Number of Windows:	10
Weather Sealed Windows and Exterior Doors?	- yes, pertially.
Average Area of Window Open to Outside Air (Feet2):	* /* 0
Ventilation During Sampling:	- 00

Building Crawl Space	Input
Crawl Space Height (Feet):	0
Number Crawl Space Vents:	
Average Area per Crawl Space Vent (Feet2):	
Evidence of moisture intrusion into Crawl Space from Soil?	-

Building Basement	Input
Basement Height (Feet):	
Basement Footprint Area (Feet2):	
Basement Wall Area Below Ground Surface (Feet2):	
Exposed Basement above grade?	-
Vents or Windows above-grade in exposed basement?	-
Unfinished Basement?	-
Evidence of moisture intrusion into Basement from Soil?	-

Factors Potentially Influencing Indoor Air Quality	Input
Is there an attached garage?	- 4es
Is there smoking in the building?	
Is there new carpet or furniture?	- new bed, mattress in bedroom (I mo. ago)
Have clothes or drapes been recently dry cleaned?	- no
Has painting or staining been done within the last six months?	- 1 bedroom reprinted (15 mo. ago)
Has the building been recently remodeled?	- 90
Has the building ever had a fire?	- no
Is there a hobby or craft area in the building?	- oil printing in app greek (thinners moved lest
Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?	- Yes, but moved lost week
Is there a fuel oil tank on the property?	- 0
Is there a septic tank on the property?	- 0
Has the building been fumigated or sprayed for pests recently?	- 0
Historically the building was primarily used for?	- Cesidential
Do current building occupants use solvents at another location (e.g., work, hobby)?	- 🔿

Meteorological Conditions	Input
Weather:	SVAAI
Outdoor Temperature - High (°F):	57/
Outdoor Temperature - Low (°F):	37
Indoor Temperature (°F):	68
Barometric Pressure Reading (mmHg):	30.12
Wind Direction:	-NF-3W
Average Wind Speed (mph):	6
HVAC Setting for Current Season:	- Heat


(End of Form)

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor rming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.

Site Information	Input
Building Address:	1271 26th Ave, San Francisco, CA
Site/Facility Name:	Police Credit Vrian
Screening Event Date:	
Screening Event Time:	
Event Weather Conditions:	5 vm y
Name of Person(s) Conducting Sampling:	
Company Conducting Sampling:	two E?
Field Instrument Type ¹ (List All):	0.5
Instrument Calibration Date:	

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
UPPER LIVINGIUM	- B2.			0	
Dirle	-			0	
Bedruan (5)	-			8	
hew roun (W)	-			0	
Between	-)			0	
Jan Victor I	- SM			0	
	- toilet			0	
	- Sharen dram			0	
hitchen	- 32.			0	
1110-00-1	- SMI			n	
	-				
	-				
	_				
	_				
	_				
	_				
Carre	- BZ	+	14	0	
Buth (E)	- 1/	_		0	
TANK U	- tenlet			0	
	- SM1	1		P	
	- Shurler drup			0	
Crewle	- B.S.	+		Ó	
Berton (SE)	- 60			8	
Artchen	- 1			8	
Minn		-		6	
P. IICa	- SM)			0	
Bel (SW)	- BZ	_		0	
Bel (NW) Eth(Catai)	- BE			0	
Wyll way	- tolet			0	
		_		Ó	
	- SMM	_		8	
\	- Shower draing				<u> </u>
Comments:	jetone moved) atsile	alredy.		
ocapat	told alahol eep car outof	produts +	aeresols		
authorite. h	PPD CON CONTOF	corce			

Type in or select answers from drop-down lists in the righthand column.
Upload answers to GeoTracker database for criteria marked with an asterisks (*).
See Table 1 in the *Guidance on Uploading Vapor Intrusion Information into GeoTracker*(Attachment 4 of Supplemental Vapor Intrusion Guidance) for a description of Building
Design Type input choices.

Person Conducting Survey	Input	
Name:	Eric The)	
Company:	AMD ES	
Phone Number:	650-750-6639	
Email:	ethell Ormdesnet	

Building Contact Information	Input
Name:	Newman Levney
Contact Title:	- carpent
Phone Number:	1
Email:	Newman- tempo potralam
Building Occupant Interviewed?	- Yes

Building Information	Input
Date of Building Survey (dd/mm/yy):	1/3/123
*Building Name:	Mesiderial
*Building Address (Street, City):	128079th Ave. SF, CA
Coordinates for Center of Building (Latitude, Longitude; decimal degrees to 0.00000):	37,76360°N, 12248548°W
*Building Location Onsite/Offsite with respect to Site/Facility:	- Offsite
*Year Built (yyyy; approximate if unsure):	N 1924
*Building Occupants:	- H

Building Dimensions	Input
*Building Footprint Area (within enclosed space; square feet [Ft2]):	N 1500
Building Dimensions (at grade; feet by feet):	~28 × 44
*Ceiling Height of Ground Floor (Feet):	~ 84.
*Number of Floors (excluding the basement):	2,

Building Design	Input	
*Building Design Type:	- Simile unt resideral	
Has the design been modified?	- 2016 remodel	
*Foundation Type:	- 5/26	
*Building Vapor Intrusion Mitigation System:		
*Heating, Ventilation, & Air Conditioning (HVAC) System:	- hedring only	
Type of Energy Used in Building?	- gos orge, cother HVAC, while habe telepho	rkiti
Energy Primarily Used For?	1- Cookin Hoton, Landon	-
Number of Units for Multi-Unit Buildings:	3,712 3)	
Number of Rooms (average per unit for multi-unit buildings):	10,	
Number of Exterior Doors:	3 + grove dan	
Number of Elevators:	12	
Number of Active Exhaust Fans (e.g., kitchen/bathroom):	4	
Chimney or Other Vertical Draft Source?	- 1	

Building Slab	Input
Slab Thickness (inches; approximate if unsure):	~ 3-6 inches?
Large Slab Penetrations (> 1 Foot Diameter):	- NO
Soil Type 0 to 3 Feet Below Building:	- Sondy?
Evidence of moisture intrusion from Below Slab?	- NO

Building Windows	Input
Number of Windows:	10
Weather Sealed Windows and Exterior Doors?	- 0.
Average Area of Window Open to Outside Air (Feet2):	~10fz
Ventilation During Sampling:	- No

Building Crawl Space	Input
Crawl Space Height (Feet):	2
Number Crawl Space Vents:	
Average Area per Crawl Space Vent (Feet2):	
Evidence of moisture intrusion into Crawl Space from Soil?	•

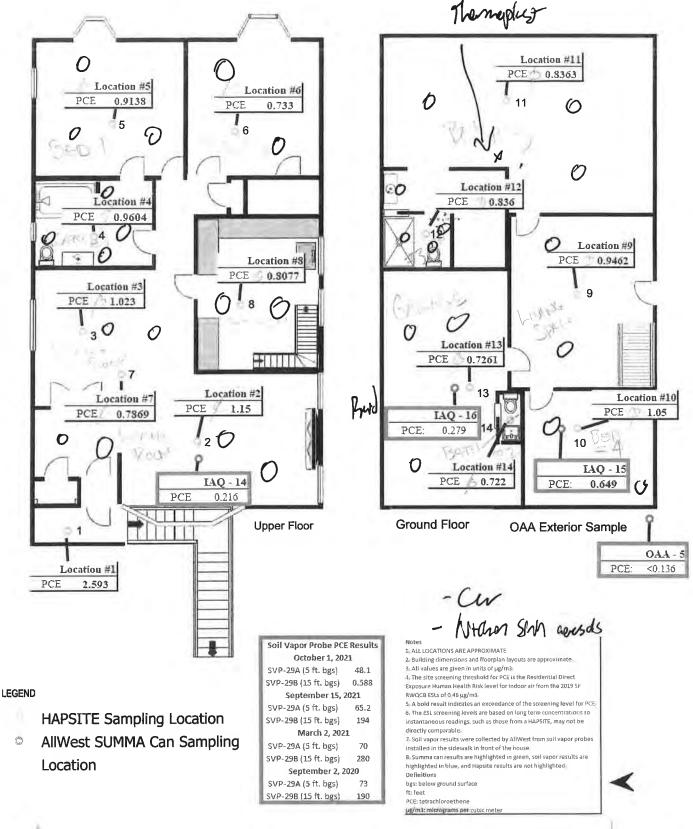
Building Basement	Input
Basement Height (Feet):	0.
Basement Footprint Area (Feet2):	
Basement Wall Area Below Ground Surface (Feet2):	
Exposed Basement above grade?	-
Vents or Windows above-grade in exposed basement?	-
Unfinished Basement?	-
Evidence of moisture intrusion into Basement from Soil?	4

Factors Potentially Influencing	Input
Indoor Air Quality	mpat
Is there an attached garage?	- 489
Is there smoking in the building?	- 2
Is there new carpet or furniture?	- @
Have clothes or drapes been recently dry cleaned?	- 0
Has painting or staining been done within the last six months?	. 6
Has the building been recently remodeled?	- 2016 centel (downstars only)
Has the building ever had a fire?	- 4
Is there a hobby or craft area in the building?	- 8
Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?	- prohabilin garage?
Is there a fuel oil tank on the property?	- 0
Is there a septic tank on the property?	- 8
Has the building been fumigated or sprayed for pests recently?	- D
Historically the building was primarily used for?	- Residential
Do current building occupants use solvents at another location (e.g., work, hobby)?	- 0

Meteorological Conditions	Input
Weather:	Sum
Outdoor Temperature - High (°F):	571
Outdoor Temperature - Low (°F):	37
Indoor Temperature (°F):	67
Barometric Pressure Reading (mmHg):	30.18
Wind Direction:	- NE-SW
Average Wind Speed (mph):	6 mph
HVAC Setting for Current Season:	- Hent

(End of Form)

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor ming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

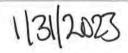

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.

Site Information	Input
Building Address:	1280 27th Ave
Site/Facility Name:	Police Credit Union
Screening Event Date:	
Screening Event Time:	1200
Event Weather Conditions:	
Name of Person(s) Conducting Sampling:	L. Mari
Company Conducting Sampling:	
Field Instrument Type ¹ (List All):	
Instrument Calibration Date:	

Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
Bell	- Brewling Fall	0	0	爱想多	
Bedz	- 11		0	B	
Between	- B.Z.		0		
	- 514		Ō		
	- torket		0		
A)	- Shere day		0		
Motchen	- B2		0		1
V	- suh		0		Acesol 5 - rais
Livie Ram	-BZ		0		
Dwe Jam	- 132		0		
Ü	-				
und - Gareje	-		0		
V	-	1			
BeD#3	-83		0		
Bedty	- 11		0		
Berlicon	-BZ		0		
	- Sinh	1	0	1	
	- teile		0		
V	- Shower drain		0		
	-				
Live gove	- B.Z.		0		
1	-				
	-				
	-				
	-				
	-				
	-				
	-				
	-				
	-				
	1-				

Occupats asked to now alcohol bused products and appeals outside and to move the our from the yough.



1280 27Th Ave. HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 30 and October 1, 2021 San Francisco, CA

DATE: 10/20/2021

CONTRACT NO.: 21-073A

Figure

Type in or select answers from drop-down lists in the righthand column.

Upload answers to GeoTracker database for criteria marked with an asterisks (*).

See Table 1 in the *Guidance on Uploading Vapor Intrusion Information into GeoTracker*(Attachment 4 of Supplemental Vapor Intrusion Guidance) for a description of Building

Design Type input choices.

Person Conducting Survey	Input
Name:	Exic Theil
Company:	BMD ES
Phone Number:	650 450 6639
Email:	etheil @rmdes.net

Building Contact Information	Input
Name:	Adam Michels
Contact Title:	- Occupant
Phone Number:	1
Email:	adamanichels @ yahou con
Building Occupant Interviewed?	-

Building Information	Input
Date of Building Survey (dd/mm/yy):	1/31/23
*Building Name:	Residetia
*Building Address (Street, City):	1275 26th Ave, SF, CA
Coordinates for Center of Building (Latitude, Longitude; decimal degrees to 0.00000):	37. 76370°N, 122.48499°W
*Building Location Onsite/Offsite with respect to Site/Facility:	- offsite
*Year Built (yyyy; approximate if unsure):	1928
*Building Occupants:	- Q4

Building Dimensions	Input
*Building Footprint Area (within enclosed space; square feet [Ft2]):	1200
Building Dimensions (at grade; feet by feet):	? -28 7-41
*Ceiling Height of Ground Floor (Feet):	9"
*Number of Floors (excluding the basement):	2

Building Design	Input	
*Building Design Type:	- Single unt residular	
Has the design been modified?	- N.O	
*Foundation Type:	- 5/ab	
*Building Vapor Intrusion Mitigation System:	=	
*Heating, Ventilation, & Air Conditioning (HVAC) System:	- Heating (don't use) use natural cas	
Type of Energy Used in Building?	or Freehre + Hove (Cas) + Electrican	
Energy Primarily Used For?	- Unto-Hathe Laury Cooking	
Number of Units for Multi-Unit Buildings:	1 37 11.3	
Number of Rooms (average per unit for multi-unit buildings):	1)	
Number of Exterior Doors:	3 + Garage	
Number of Elevators:	0	
Number of Active Exhaust Fans (e.g., kitchen/bathroom):	2 1-betram upsters Locales ceitin	ised
Chimney or Other Vertical Draft Source?	-	J

Building Slab	Input
Slab Thickness (inches; approximate if unsure):	~ 3-6 inches 7,
Large Slab Penetrations (> 1 Foot Diameter):	- NO
Soil Type 0 to 3 Feet Below Building:	- Swdy?
Evidence of moisture intrusion from Below Slab?	- NO

Building Windows	Input
Number of Windows:	7
Weather Sealed Windows and Exterior Doors?	-10
Average Area of Window Open to Outside Air (Feet2):	10 53
Ventilation During Sampling:	- No

Building Crawl Space	Input
Crawl Space Height (Feet):	-0-
Number Crawl Space Vents:	
Average Area per Crawl Space Vent (Feet2):	
Evidence of moisture intrusion into Crawl Space from Soil?	•

Building Basement	Input
Basement Height (Feet):	0
Basement Footprint Area (Feet2):	
Basement Wall Area Below Ground Surface (Feet2):	
Exposed Basement above grade?	
Vents or Windows above-grade in exposed basement?	•
Unfinished Basement?	-
Evidence of moisture intrusion into Basement from Soil?	-

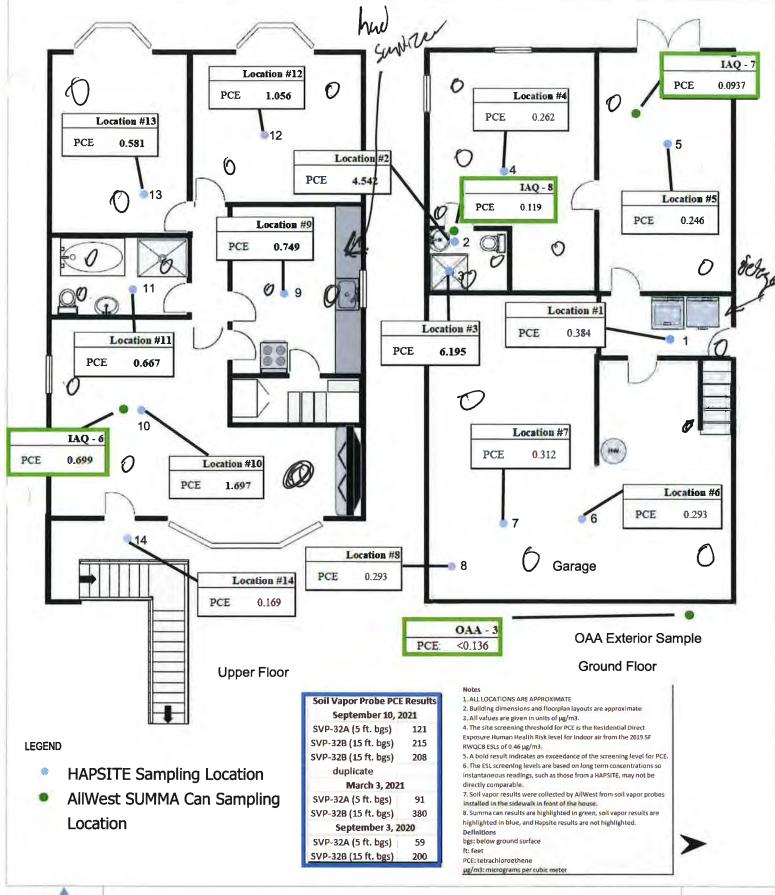
Factors Potentially Influencing Indoor Air Quality	Input
Is there an attached garage?	- vx -
Is there smoking in the building?	
Is there new carpet or furniture?	- A
Have clothes or drapes been recently dry cleaned?	- 0
Has painting or staining been done within the last six months?	- 6
Has the building been recently remodeled?	-6
Has the building ever had a fire?	
Is there a hobby or craft area in the building?	- 0
Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?	
Is there a fuel oil tank on the property?	- 0. BOP in budgered
Is there a septic tank on the property?	- 0
Has the building been fumigated or sprayed for pests recently?	
Historically the building was primarily used for?	- Residuital
Do current building occupants use solvents at another location (e.g., work, hobby)?	- 0

Meteorological Conditions	Input
Weather:	Sumy
Outdoor Temperature - High (°F):	57°
Outdoor Temperature - Low (°F):	37
Indoor Temperature (°F):	68
Barometric Pressure Reading (mmHg):	30.18
Wind Direction:	-NE-SW
Average Wind Speed (mph):	6
HVAC Setting for Current Season:	- Mext

(End of Form)

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor rming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.


Site Information	Input
Building Address:	1275 Jeth Ave, Sun Forncisco, CA
Site/Facility Name:	Police Credit Union
Screening Event Date:	
Screening Event Time:	
Event Weather Conditions:	
Name of Person(s) Conducting Sampling:	
Company Conducting Sampling:	SWD E?
Field Instrument Type ¹ (List All):	
Instrument Calibration Date:	

Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
Mer Bed (NW)	- B.Z.		E	Opb	
Rad (5 W)	-				
Batheum	- \\/			0	
Kotoan	SIM			0	
	- toilet			0	
	- Slawdran			0	
Mitchey	- BE			Ø	
SIM drain	- SIM drain			0	
Dung oran	- BZ			O	
ivlycen	- Bt			Ø	
ð	-				
(House) - (glave)	- BZ	_		0	
Bed (NV)	-			O	
Bedish	- V		Y	0	
Bullian	- RZ			0	
44	- Sinh			0	
	- Sheer down		y ma	0	97
	- toller			0	
	- '				
	-				
	-				
	-				
	-	ii .			
	-				
	-				
	-				
	-				
	-				
	-				
	-				
	_				

Comments:

Ashad occupant to more hand southern outside and not park in garage

DRAFTER: KP/MV/JB

1275 26th Ave.
HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results
September 9 and 10, 2021
San Francisco, CA

Figure

DATE: 10/20/2021

1/31/2023

Type in or select answers from drop-down lists in the righthand column.

Upload answers to GeoTracker database for criteria marked with an asterisks (*).

See Table 1 in the *Guidance on Uploading Vapor Intrusion Information into GeoTracker*(Attachment 4 of Supplemental Vapor Intrusion Guidance) for a description of Building Design Type input choices.

Person Conducting Survey	Input
Name:	Exic Theil
Company:	RATID ES
Phone Number:	650-450-6639
Email:	etheil@moles.net

Input
Armendo and Melen Biberero
- Occupant
hekadino @ notzero.com
- 405

Building Information	Input
Date of Building Survey (dd/mm/yy):	13/123
*Building Name:	Regulation)
*Building Address (Street, City):	1281 26th Ave. SF,CA
Coordinates for Center of Building (Latitude, Longitude; decimal degrees to 0.00000):	37.76364°N, 122.48492°W
*Building Location Onsite/Offsite with respect to Site/Facility:	- offsite
*Year Built (yyyy; approximate if unsure):	
*Building Occupants:	- 21

Building Dimensions	Input
*Building Footprint Area (within enclosed space; square feet [Ft2]):	Stelle V0 ~ 1250
Building Dimensions (at grade; feet by feet):	~48 × 27
*Ceiling Height of Ground Floor (Feet):	9
*Number of Floors (excluding the basement):	2

Building Design	Input
*Building Design Type:	- Since unit residetion
Has the design been modified?	- Not for KA 10-1541, Downstars
*Foundation Type:	- 5/ab-on-grade
*Building Vapor Intrusion Mitigation System:	- None
*Heating, Ventilation, & Air Conditioning (HVAC) System:	- Heating Only (certal Heating)
Type of Energy Used in Building?	- Electricity & Natural Coxis Hester & Cookin)
Energy Primarily Used For?	- Water Horry Coking Dryin Lewin
Number of Units for Multi-Unit Buildings:	vait
Number of Rooms (average per unit for multi-unit buildings):	(1
Number of Exterior Doors:	4
Number of Elevators:	No
Number of Active Exhaust Fans (e.g., kitchen/bathroom):	(kitchen)
Chimney or Other Vertical Draft Source?	- Chimney, (1)

Building Slab	Input
Slab Thickness (inches; approximate if unsure):	-3-6"
Large Slab Penetrations (> 1 Foot Diameter):	- 10
Soil Type 0 to 3 Feet Below Building:	- 56ndy?
Evidence of moisture intrusion from Below Slab?	- NO

bult 15975 a50

Building Windows	Input
Number of Windows:	19
Weather Sealed Windows and Exterior Doors?	- Vo
Average Area of Window Open to Outside Air (Feet2):	Ó
Ventilation During Sampling:	- Nn

Building Crawl Space	Input
Crawl Space Height (Feet):	· C
Number Crawl Space Vents:	
Average Area per Crawl Space Vent (Feet2):	
Evidence of moisture intrusion into Crawl Space from Soil?	+

Building Basement	Input
Basement Height (Feet):	8
Basement Footprint Area (Feet2):	
Basement Wall Area Below Ground Surface (Feet2):	
Exposed Basement above grade?	
Vents or Windows above-grade in exposed basement?	-
Unfinished Basement?	-
Evidence of moisture intrusion into Basement from Soil?	

Factors Potentially Influencing Indoor Air Quality	Input
Is there an attached garage?	- 429
Is there smoking in the building?	- No
Is there new carpet or furniture?	- Po
Have clothes or drapes been recently dry cleaned?	- <i>N</i> o
Has painting or staining been done within the last six months?	- 20
Has the building been recently remodeled?	- NO
Has the building ever had a fire?	- No
Is there a hobby or craft area in the building?	- Po
Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?	- No
Is there a fuel oil tank on the property?	- No
Is there a septic tank on the property?	- No
Has the building been fumigated or sprayed for pests recently?	- N ₉
Historically the building was primarily used for?	- Rossalati
Do current building occupants use solvents at another location (e.g., work, hobby)?	- N _e

Meteorological Conditions	Input
Weather:	Suny
Outdoor Temperature - High (°F):	57
Outdoor Temperature - Low (°F):	3.7
Indoor Temperature (°F):	67
Barometric Pressure Reading (mmHg):	30.18
Wind Direction:	- NE-SW
Average Wind Speed (mph):	6 mon
HVAC Setting for Current Season:	- Heat

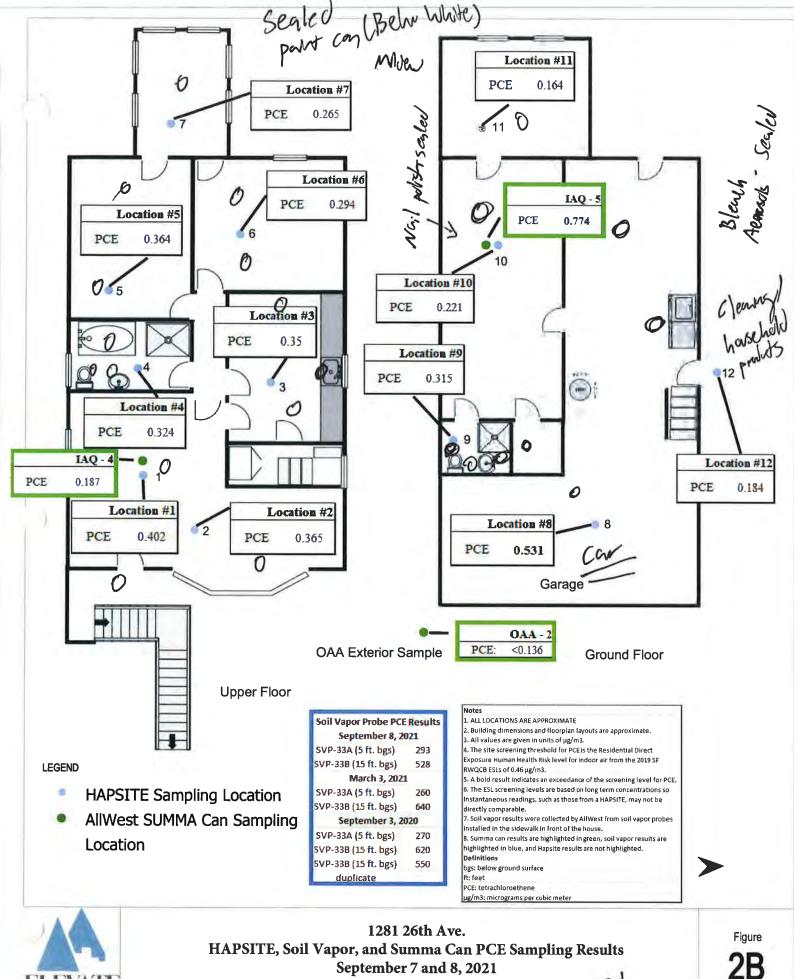
(End of Form)

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor rming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.

Site Information	Input
Building Address:	1281 24th Ave, San Francisco, CA
Site/Facility Name:	Police Credit Union
)Screening Event Date:	01/31/22
Screening Event Time:	1 /6 /1/ /// 1
Event Weather Conditions:	15° - Sun-1
Name of Person(s) Conducting Sampling:	E. theil
Company Conducting Sampling:	
Field Instrument Type ¹ (List All):	
Instrument Calibration Date:	

U=Upper G=Ground


Indoor Air Source Screen Form

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
- W Liveyour	- Brenthay zone			0	
				0	
	-				
- U Mitchen	- Breather zone - Sinh Gran			0	
	- Sinh Olman			0	
-	-				
	- U				
- U Bathrun	- Breather zone - 9 cilet	0		0	
-	- Tuiler V	0		0	
•	- Sinh	1		0	
-	- Should			0	
1101 (47)	D W.			0	
- V Balrow (Mar)	- Brattagame	+	-	0	
-Usymum (C.)	<u> </u>	_		0	
-U Bridrown (SW)	•			0	
		+			
-1-1.40	- R June (wt)	+		0	
- 6 burge	- B. Zune (yest) - 11 (Eust)			0	
-	- neur CN			0	-
_	-			0	
- (+ " Lang 100m"	- B. Zune.			0	
- 1	- B. Zure - B. Zure			0	
	-				
- G hew rum (W)	- B. zwe			0	Mila from both wall
- 0.01	-			V	about 2-3+ up will
-					neitue is observed
-	-				17 HALINE
-	-				
-	-				
	-				

Comments:

Occupants asked to move acrusolly and alcohol bused products (southten) outside.

occupant confirmed they won't use can in young

San Francisco, CA

Type in or select answers from drop-down lists in the righthand column.

Upload answers to GeoTracker database for criteria marked with an asterisks (*).

See Table 1 in the *Guidance on Uploading Vapor Intrusion Information into GeoTracker*(Attachment 4 of Supplemental Vapor Intrusion Guidance) for a description of Building

Design Type input choices.

Person Conducting Survey	Input
Name:	Erc Tell
Company:	RMD ES
Phone Number:	650 450 6639
Email:	ether a mucsuet

Building Contact Information	Input
Name:	Alrelee
Contact Title:	- acvant
Phone Number:	
Email:	Alives lee 670 Occaral con
Building Occupant Interviewed?	- Yeg

Building Information	Input
Date of Building Survey (dd/mm/yy):	1/31/23
*Building Name:	a peiderial
*Building Address (Street, City):	1276 27th Ave, SF,CA
Coordinates for Center of Building (Latitude, Longitude; decimal degrees to 0.00000):	37.76369°N, 122.48550°W
*Building Location Onsite/Offsite with respect to Site/Facility:	-Offsite
*Year Built (yyyy; approximate if unsure):	1904?
*Building Occupants:	- 6

Building Dimensions	Input
*Building Footprint Area (within enclosed space; square feet [Ft2]):	5/100 sq ft.
Building Dimensions (at grade; feet by feet):	~ 25" x35"
*Ceiling Height of Ground Floor (Feet):	λ'
*Number of Floors (excluding the basement):	2

Building Design	Input
*Building Design Type:	- State Unit Presidential
Has the design been modified?	- N ₂ V
*Foundation Type:	- 5/ab
*Building Vapor Intrusion Mitigation System:	- Ø
*Heating, Ventilation, & Air Conditioning (HVAC) System:	- Hoating only
Type of Energy Used in Building?	- Electricity (Gos Cooking)
Energy Primarily Used For?	- Coking
Number of Units for Multi-Unit Buildings:	,
Number of Rooms (average per unit for multi- unit buildings):	10
Number of Exterior Doors:	3 + garap dur
Number of Elevators:	R
Number of Active Exhaust Fans (e.g., kitchen/bathroom):	1 (kildren)
Chimney or Other Vertical Draft Source?	- 1 (chimpey)

Building Slab	Input
Slab Thickness (inches; approximate if unsure):	-3-6 inches
Large Slab Penetrations (> 1 Foot Diameter):	- NO
Soil Type 0 to 3 Feet Below Building:	- 5and-1
Evidence of moisture intrusion from Below Slab?	- NO

Building Windows	Input
Number of Windows:	10
Weather Sealed Windows and Exterior Doors?	- 2
Average Area of Window Open to Outside Air (Feet2):	10 fr
Ventilation During Sampling:	- Q

Building Crawl Space	Input
Crawl Space Height (Feet):	Q
Number Crawl Space Vents:	
Average Area per Crawl Space Vent (Feet2):	
Evidence of moisture intrusion into Crawl Space from Soil?	-

Building Basement	Input
Basement Height (Feet):	α
Basement Footprint Area (Feet2):	
Basement Wall Area Below Ground Surface (Feet2):	
Exposed Basement above grade?	*
Vents or Windows above-grade in exposed basement?	
Unfinished Basement?	-
Evidence of moisture intrusion into Basement from Soil?	-

Factors Potentially Influencing Indoor Air Quality	Input
Is there an attached garage?	- Yes
Is there smoking in the building?	- B
Is there new carpet or furniture?	- 0
Have clothes or drapes been recently dry cleaned?	- 4
Has painting or staining been done within the last six months?	- 2
Has the building been recently remodeled?	
Has the building ever had a fire?	- 0
Is there a hobby or craft area in the building?	- 0,
Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?	- 7
Is there a fuel oil tank on the property?	- 8
Is there a septic tank on the property?	- 2
Has the building been furnigated or sprayed for pests recently?	- 🔌
Historically the building was primarily used for?	- Result
Do current building occupants use solvents at another location (e.g., work, hobby)?	- 6

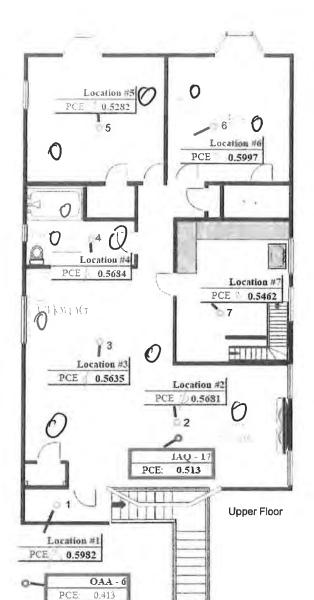
Meteorological Conditions	Input
Weather:	Sumy
Outdoor Temperature - High (°F):	57'
Outdoor Temperature - Low (°F):	37
Indoor Temperature (°F):	66
Barometric Pressure Reading (mmHg):	3018
Wind Direction:	- NE-SW
Average Wind Speed (mph):	6 noh
HVAC Setting for Current Season:	- Heat

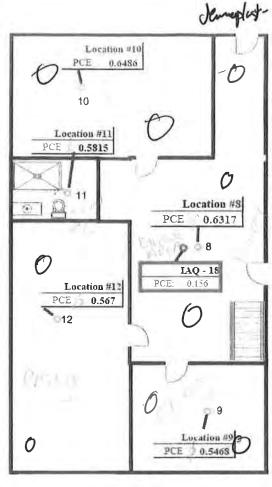
(End of Form)

Indoor Air Source Screen Form

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor ming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.

Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.

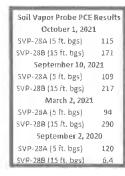

Site Information	Input
Building Address:	1276 27th Ave, San Francisco, CA
Site/Facility Name:	Police Credit Union
Screening Event	01/2/12
Screening Event Time:	1000
Event Weather Conditions:	
Name of Person(s) Conducting Sampling:	
Company Conducting Sampling:	
Field Instrument Type ¹ (List All):	1 1/1/1/ 1/ -
Instrument Calibration Date:	


J- Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Indoor Air Source Screen Form

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
VPPOV BRU (NE)	- B2		0	PPB	i i
Bed 2 (SE)	- 1		0	7 / 17	Kun Santald
Ding	-		0		
Living	- 1/		0		
Pilalen	- BZ		0		
0	- SMM		0		
Bettreem	- B7		-0		
	- 5MM		0		
	- talet		0		
	- Shower droin		U		
1 1 2100			20)		
(source) Bod (E)	- 87		8		
(40 W)	-				
Courle Diny was	-		0		-1
But Drewn	- 1/		0		
Tay wound	- SINP		0		
	- tollet		0		
	- shower drain		N		
	- SHOULD GIVEN		~		
					er.
	-				
	•				
	-				
	-				
	-				
	-				
	_				

Occupant asked to nove alcohol based and aerosol puduts outside and not bring on into sauge


Ground Floor

LEGEND

HAPSITE Sampling Location

OAA Exterior Sample

 AllWest SUMMA Can Sampling Location

Notes

- 1. ALL LOCATIONS ARE APPROXIMATE
- 2, Building dimensions and Hourplan Jayouts are approximate
- 3. All values are given in units of µg/m3.

 4. The site screening threshold for PCE is the Residential Direct.
- 4. The site screening threshold for PCE is the Residential Direct Exposure Human Health Hisk level for Indoor air from the 2019 SF RWOCB Ests of 0.46 µg/m3 3. A bold result indicates an exceedance of the screening level for PCE
- 6. The ESL screening levels are based on long term concentrations so instantaneous readings, such as those from a HAPSITE, may not be
- directly comparable 2i Sorl vapor results were collected by AllWest from soil vapor probes installed in the sidewalk in front of the house.
- installed in the snowblk in rounce dia noise.

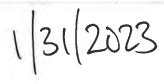
 Summa can results are highlighted in green, soil vapor results are highlighted in blue, and Hapsite results are not highlighted.

 Definitions
- bgs: below ground surface
- it: feet PCE: tetrachloroethene

PCE: tetrachloroethene

127627Th Ave.

HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 30 and October 1, 2021 San Francisco, CA


DRAFTER: KP/J

DATE: 10/20/202

CONTRACT NO.: 21-073A

Figure

\$= NO VOCS DETECTED WY BURNE

Type in or select answers from drop-down lists in the righthand column.

Upload answers to GeoTracker database for criteria marked with an asterisks (*).

See Table 1 in the *Guidance on Uploading Vapor Intrusion Information into GeoTracker*(Attachment 4 of Supplemental Vapor Intrusion Guidance) for a description of Building Design Type input choices.

Person Conducting Survey	Input
Name:	Exichel
Company:	AMD ES
Phone Number:	GO 450 639
Email:	étheil a undes net

Building Contact Information	Input
Name:	Richard Chri
Contact Title:	- Occupant
Phone Number:	
Email:	Richard - Chri @ a Hook com
Building Occupant Interviewed?	- Yes

Building Information	Input
Date of Building Survey (dd/mm/yy):	151123
*Building Name:	128477 Residental
*Building Address (Street, City):	1284 27th Ave, SF,CA
Coordinates for Center of Building (Latitude, Longitude; decimal degrees to 0.00000):	37.76358°N, 122.4855PW
*Building Location Onsite/Offsite with respect to Site/Facility:	- offsite
*Year Built (yyyy; approximate if unsure):	1 6
*Building Occupants:	8

Building Dimensions	Input		
*Building Footprint Area (within enclosed space; square feet [Ft2]):	NILOS, fl,		
Building Dimensions (at grade; feet by feet):	~ 25 x 40		
*Ceiling Height of Ground Floor (Feet):	81		
*Number of Floors (excluding the basement):	2		

Building Design	Input
*Building Design Type:	- Sinckle Unit residential
Has the design been modified?	- 2019 (emodel (total remodel)
*Foundation Type:	- 5/2h on grade
*Building Vapor Intrusion Mitigation System:	- No
*Heating, Ventilation, & Air Conditioning (HVAC) System:	- Herting only Charmace
Type of Energy Used in Building?	- 90 frant sie to electric
Energy Primarily Used For?	- Cooking lander hetron
Number of Units for Multi-Unit Buildings:	6 2
Number of Rooms (average per unit for multi-unit buildings):	15
Number of Exterior Doors:	5 to camp door
Number of Elevators:	
Number of Active Exhaust Fans (e.g., kitchen/bathroom):	6
Chimney or Other Vertical Draft Source?	- 8

Building Slab	Input
Slab Thickness (inches; approximate if unsure):	-3-6"
Large Slab Penetrations (> 1 Foot Diameter):	- <i>Ν</i> ΰ
Soil Type 0 to 3 Feet Below Building:	- Sandy 7.
Evidence of moisture intrusion from Below Slab?	- NO

Building Windows	Input		
Number of Windows:	8		
Weather Sealed Windows and Exterior Doors?	- 2		
Average Area of Window Open to Outside Air (Feet2):	10 03		
Ventilation During Sampling:	- 8		

Building Crawl Space	Input
Crawl Space Height (Feet):	A
Number Crawl Space Vents:	
Average Area per Crawl Space Vent (Feet2):	
Evidence of moisture intrusion into Crawl Space from Soil?	-

Building Basement	Input
Basement Height (Feet):	0
Basement Footprint Area (Feet2):	
Basement Wall Area Below Ground Surface (Feet2):	
Exposed Basement above grade?	-
Vents or Windows above-grade in exposed basement?	-
Unfinished Basement?	-
Evidence of moisture intrusion into Basement from Soil?	

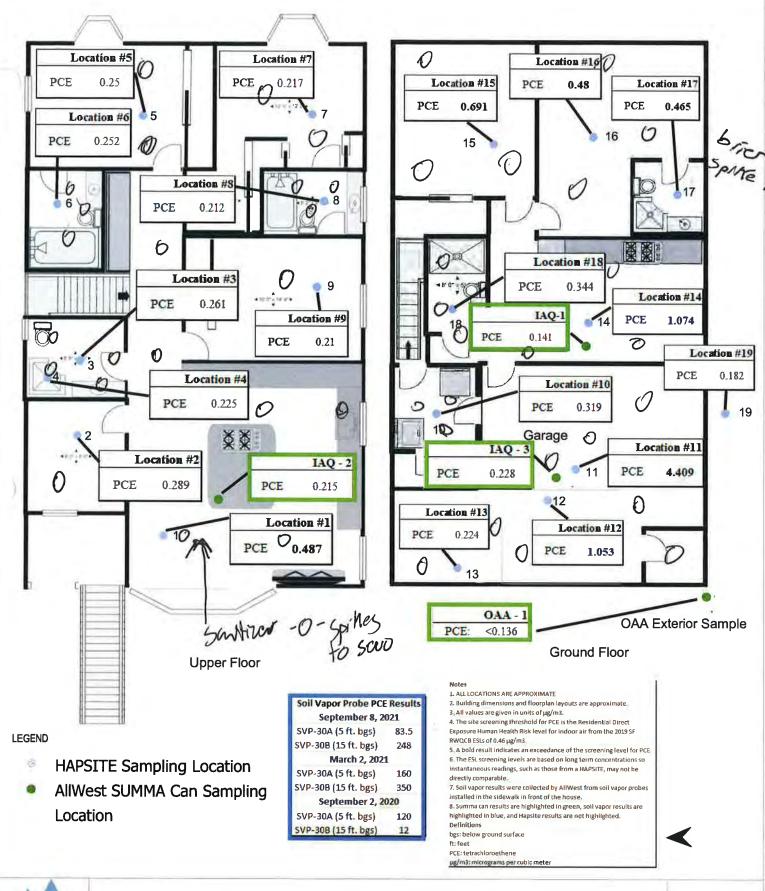
Factors Potentially Influencing Indoor Air Quality	Input
Is there an attached garage?	- yes
Is there smoking in the building?	- 6
Is there new carpet or furniture?	- 0
Have clothes or drapes been recently dry cleaned?	- &
Has painting or staining been done within the last six months?	- 8
Has the building been recently remodeled?	- D (2019)
Has the building ever had a fire?	- 8
Is there a hobby or craft area in the building?	
Are cleaning solvents stored in the building (e.g., spot cleaner, gun cleaner?	- laundy
Is there a fuel oil tank on the property?	
Is there a septic tank on the property?	-0
Has the building been fumigated or sprayed for pests recently?	- 2
Historically the building was primarily used for?	- (esi) oto d
Do current building occupants use solvents at another location (e.g., work, hobby)?	- 8

Meteorological Conditions	Input
Weather:	Sunv
Outdoor Temperature - High (°F):	Sept .
Outdoor Temperature - Low (°F):	37
Indoor Temperature (°F):	67
Barometric Pressure Reading (mmHg):	20,18
Wind Direction:	- NE-SW
Average Wind Speed (mph):	6 moh
HVAC Setting for Current Season:	- Hur

(End of Form)

Indoor Air Source Screen Form

This form should be used while conducting field screening (Step 3A.3, Supplemental Vapor Intrusion Guidance). An Indoor Air Source Screen Survey of indoor air will help identify potential sources of vapor rming chemicals (VFCs) and/or potential subsurface vapor entry points. Common screening tools, such as, Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), or Gas Chromatography-Electron Capture Detector (GC-ECD), should be used to detect the presence of VFCs in the air.


Use this form to document the room/area and location where the measurement was recorded during the Indoor Air Source Screen Survey, the field instrument type used, and the instrument reading and units. If a consumer product is identified and surrounding air tested, the location and the volatile ingredients of the product should be noted. (If the item(s) may be contributing VFCs to the indoor air, the items should be removed in advance of indoor air sampling.) This survey should be used to support the development of a conceptual understanding of how vapor intrusion may be occurring at the building and used in selecting sample locations for evaluating spatial distribution of VFCs in indoor air.

Site Information	Input
Building Address:	1284 27th Ave
Site/Facility Name:	Police Credit Union
Screening Event Date:	のりなりか
Screening Event Time:	0000
Event Weather Conditions:	
Name of Person(s) Conducting Sampling:	
Company Conducting Sampling:	
Field Instrument Type ¹ (List All):	ppbrae
Instrument Calibration Date:	

Photoionization Detector (PID), Gas Chromatography-Photoionization Detector (GC-PID), Gas Chromatography-Mass Spectrometry (GC-MS), Gas Chromatography-Electron Capture Detector (GC-ECD), etc.

Indoor Air Source Screen Form

Sample Room/Area	Sample Location	Sample ID	Instrument Reading	Units	Volatile Ingredients in Consumer Products Identified Near Sample
- Living room	- breathing zone		0.0	PPb	
- Kitchen	- brenthing sore		0,0	1	
	sink down		ව, 0		
Upper Ripor bedroom	- benething 7 ans		000		
Upper floor bottom	- brookhing zone		0,0		
	- shower drain		0,0		
	- sint drain		0,0		
	- to:/et		0,0		
UF bedroom 2	- beather zone		0,0		
UF Bothroom 2	- breathing zone		0.0		
	- shower drain		0.0		
	- Sink drain		0.0		
	- toilet		0.0		
VE bodroom 3	-breathing some		0,0		
UF bothroom 3	- broathing 2000		0.0		
	- Shower drain		0.0	2.1	
	- sink drain		0.0		1
	- toilet		0:0		
bause	- breathing zones		0,0		
	- 13		ರ್ ನ		
	- 1		00		
	- L		0,0		
LF Kritchen	- bink drain		0.0		
	- browthing zone		0,0		
Landry Goom	- breathing rome		3 5		
LF bedroom 1	- brenthing zorc		010		
UF bethroom !	- sink dram		0,0		
55.7100	- Shower dain		0.0		
	- to:/et		0.0		
	- Steething zone		0.0		
if bolroom 2	- breathing zone		0.0		
Comments:	sink drain		0,0		
	shower drain		0.0		
	toilet		010		
	broathing zone		0.0	L	

1284 27th Ave.

HAPSITE, Soil Vapor, and Summa Can PCE Sampling Results September 7 and 8, 2021 San Francisco, CA

1/31/2023

DATE: 10/20/2021

CONTRACT NO.: 21-073A

Appendix D Analytical Laboratory Reports

Pace Analytical® ANALYTICAL REPORT

March 09, 2022

RMD Environmental - Walnut Creek, CA

L1468315 Sample Delivery Group:

Samples Received: 03/05/2022

Project Number: 01-DTSC-007

Description: Police Credit Union

Report To: Ivy Inouye

1371 Oakland Blvd.

Suite 200

Walnut Creek, CA 94596

Entire Report Reviewed By:

Jordan N Zito Project Manager

TABLE OF CONTENTS

Cp: Cover Page	1	
Tc: Table of Contents	2	
Ss: Sample Summary	3	
Cn: Case Narrative		
Ds: Detection Summary		
Sr: Sample Results		
VP-1271-1 L1468315-01	10	
SVP-28A L1468315-02	12	
SVP-28B L1468315-03	14	
SVP-29A L1468315-04	16	
SVP-29B L1468315-05	18	
SVP-30A L1468315-06	20	
SVP-30A-DUP L1468315-07	22	
SVP-30B L1468315-08	24	
SVP-31A L1468315-09	26	
SVP-31B L1468315-10	28	
SVP-32A L1468315-11	30	
SVP-32B L1468315-12	32	
SVP-33A L1468315-13	34	
SVP-33A-DUP L1468315-14	36	
SVP-33B L1468315-15	38	
Qc: Quality Control Summary	40	
Volatile Organic Compounds (MS) by Method TO-15	40	
Organic Compounds (GC) by Method ASTM 1946		
GI: Glossary of Terms		
al: Accreditations & Locations		

Sc: Sample Chain of Custody

48

SAMPLE SUMMARY

VP-1271-1 L1468315-01 Air			Collected by BA/EM	Collected date/time 03/04/22 11:05	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/06/22 15:13	03/06/22 15:13	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG1828077	1	03/06/22 12:45	03/06/22 12:45	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
SVP-28A L1468315-02 Air			BA/EM	03/03/22 15:59	03/05/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/06/22 15:56	03/06/22 15:56	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG1828077	1	03/06/22 12:48	03/06/22 12:48	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-28B L1468315-03 Air			BA/EM	03/03/22 14:26	03/05/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/06/22 16:40	03/06/22 16:40	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG1828193	1	03/09/22 11:06	03/09/22 11:06	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-29A L1468315-04 Air			BA/EM	03/04/22 12:25	03/05/22 09):30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/06/22 17:25	03/06/22 17:25	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG1828193	1	03/09/22 11:13	03/09/22 11:13	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-29B L1468315-05 Air			BA/EM	03/04/22 12:49	03/05/22 09):30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
/ L 11 0	WOADDAAD		date/time	date/time	CAN4/	NAC 1 II O TA
Volatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/06/22 18:08	03/06/22 18:08	CAW DBB	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG1828193	1	03/09/22 11:16	03/09/22 11:16	DDD	Mt. Juliet, TN
			Collected by	Collected date/time		
SVP-30A L1468315-06 Air			BA/EM	03/04/22 13:28	03/05/22 09):30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
/olatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/06/22 18:51	03/06/22 18:51	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG1828193	1	03/09/22 11:21	03/09/22 11:21	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-30A-DUP L1468315-07 Air			BA/EM	03/04/22 13:28	03/05/22 09):30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/06/22 19:35	03/06/22 19:35	CAW	Mt. Juliet, TN

Organic Compounds (GC) by Method ASTM 1946

WG1828193

03/09/22 11:27

03/09/22 11:27

DBB

Mt. Juliet, TN

SAMPLE SUMMARY

SVP-30B L1468315-08 Air			Collected by BA/EM	Collected date/time 03/04/22 13:59	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15 Organic Compounds (GC) by Method ASTM 1946	WG1828189 WG1828193	1	03/06/22 20:18 03/09/22 11:31	03/06/22 20:18 03/09/22 11:31	CAW DBB	Mt. Juliet, TN Mt. Juliet, TN
SVP-31A L1468315-09 Air			Collected by BA/EM	Collected date/time 03/02/22 14:02	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15 Organic Compounds (GC) by Method ASTM 1946	WG1828189 WG1828193	1	03/06/22 21:02 03/09/22 11:41	03/06/22 21:02 03/09/22 11:41	CAW DBB	Mt. Juliet, TN Mt. Juliet, TN
SVP-31B L1468315-10 Air			Collected by BA/EM	Collected date/time 03/02/22 14:40	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15 Organic Compounds (GC) by Method ASTM 1946	WG1828189 WG1828193	1 1	03/06/22 21:46 03/09/22 11:49	03/06/22 21:46 03/09/22 11:49	CAW DBB	Mt. Juliet, TN Mt. Juliet, TN
SVP-32A L1468315-11 Air			Collected by BA/EM	Collected date/time 03/03/22 13:31	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15 Organic Compounds (GC) by Method ASTM 1946	WG1828189 WG1828193	1 1	03/06/22 22:29 03/09/22 11:52	03/06/22 22:29 03/09/22 11:52	CAW DBB	Mt. Juliet, TN Mt. Juliet, TN
SVP-32B L1468315-12 Air			Collected by BA/EM	Collected date/time 03/03/22 14:03	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15 Organic Compounds (GC) by Method ASTM 1946	WG1828189 WG1828193	1	03/06/22 23:15 03/09/22 11:56	03/06/22 23:15 03/09/22 11:56	CAW DBB	Mt. Juliet, TN Mt. Juliet, TN
SVP-33A L1468315-13 Air			Collected by BA/EM	Collected date/time 03/03/22 14:50	Received da 03/05/22 09	
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15 Organic Compounds (GC) by Method ASTM 1946	WG1828189 WG1828193	1	03/06/22 23:59 03/09/22 12:00	03/06/22 23:59 03/09/22 12:00	CAW DBB	Mt. Juliet, TN Mt. Juliet, TN
SVP-33A-DUP L1468315-14 Air			Collected by BA/EM	Collected date/time 03/03/22 14:49	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15 Organic Compounds (GC) by Method ASTM 1946	WG1828189 WG1828193	1	03/07/22 00:43 03/09/22 12:04	03/07/22 00:43 03/09/22 12:04	CAW DBB	Mt. Juliet, TN Mt. Juliet, TN

SAMPLE SUMMARY

SVP-33B L1468315-15 Air			Collected by BA/EM	Collected date/time 03/03/22 15:23	Received dat 03/05/22 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15	WG1828189	1	03/07/22 01:27	03/07/22 01:27	CAW	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG1828193	1	03/09/22 12:08	03/09/22 12:08	DBB	Mt. Juliet, TN

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jordan N Zito Project Manager

DETECTION SUMMARY

			CAS#	Mol. Wt.	RDL1	RDL2	Result	Result Qual	ifier Diluti	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3		
VP-1271-1	L1468315-01	Acetone	67-64-1	58.10	1.25	2.97	1.63	3.87	1	WG1828189
VP-1271-1	L1468315-01	Benzene	71-43-2	78.10	0.200	0.639	0.264	0.843	1	WG1828189
VP-1271-1	L1468315-01	Carbon disulfide	75-15-0	76.10	0.200	0.622	0.219	0.682	1	WG1828189
VP-1271-1	L1468315-01	Cyclohexane	110-82-7	84.20	0.200	0.689	0.263	0.906	1	WG1828189
VP-1271-1	L1468315-01	Ethanol	64-17-5	46.10	1.25	2.36	4.56	8.60	1	WG1828189
VP-1271-1	L1468315-01	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.556	3.12	1	WG1828189
VP-1271-1	L1468315-01	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.924	4.57	1	WG1828189
VP-1271-1	L1468315-01	Tetrachloroethylene	127-18-4	166	0.200	1.36	10.2	69.3	1	WG1828189
VP-1271-1	L1468315-01	Trichloroethylene	79-01-6	131	0.200	1.07	0.215	1.15	1	WG1828189
VP-1271-1	L1468315-01	m&p-Xylene	1330-20-7	106	0.400	1.73	ND	1.73	1	WG1828189
SVP-28A	L1468315-02	Acetone	67-64-1	58.10	1.25	2.97	3.94	9.36	1	WG1828189
SVP-28A	L1468315-02	Chloromethane	74-87-3	50.50	0.200	0.413	0.330	0.682	1	WG1828189
SVP-28A	L1468315-02	Ethanol	64-17-5	46.10	1.25	2.36	17.5	33.0	1	WG1828189
SVP-28A	L1468315-02	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.202	1.14	1	WG1828189
SVP-28A	L1468315-02	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.448	2.22	1	WG1828189
SVP-28A	L1468315-02	Tetrachloroethylene	127-18-4	166	0.200	1.36	14.1	95.7	1	WG1828189
SVP-28A	L1468315-02	Trichloroethylene	79-01-6	131	0.200	1.07	0.696	3.73	1	WG1828189
SVP-28B	L1468315-03	Acetone	67-64-1	58.10	1.25	2.97	1.29	3.07	1	WG1828189
SVP-28B	L1468315-03	cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	0.342	1.36	1	WG1828189
SVP-28B	L1468315-03	trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	0.355	1.41	1	WG1828189
SVP-28B	L1468315-03	Ethanol	64-17-5	46.10	1.25	2.36	1.54	2.90	1	WG1828189
SVP-28B	L1468315-03	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.233	1.31	1	WG1828189
SVP-28B	L1468315-03	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.534	2.64	1	WG1828189
SVP-28B	L1468315-03	Tetrachloroethylene	127-18-4	166	0.200	1.36	56.5	384	1	WG1828189
SVP-28B	L1468315-03	1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.292	1.59	1	WG1828189
SVP-28B	L1468315-03	Trichloroethylene	79-01-6	131	0.200	1.07	8.16	43.7	1	WG1828189
SVP-29A	L1468315-04	Acetone	67-64-1	58.10	1.25	2.97	1.35	3.21	1	WG1828189
SVP-29A	L1468315-04	Chloromethane	74-87-3	50.50	0.200	0.413	0.327	0.675	1	WG1828189
SVP-29A	L1468315-04	Cyclohexane	110-82-7	84.20	0.200	0.689	0.229	0.789	1	WG1828189
SVP-29A	L1468315-04	Ethanol	64-17-5	46.10	1.25	2.36	2.12	4.00	1	WG1828189
SVP-29A	L1468315-04	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.219	1.23	1	WG1828189
SVP-29A	L1468315-04	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.468	2.31	1	WG1828189
SVP-29A	L1468315-04	Tetrachloroethylene	127-18-4	166	0.200	1.36	16.9	115	1	WG1828189
SVP-29A	L1468315-04	Trichloroethylene	79-01-6	131	0.200	1.07	0.818	4.38	1	WG1828189
SVP-29B	L1468315-05	Acetone	67-64-1	58.10	1.25	2.97	3.82	9.08	1	WG1828189
SVP-29B	L1468315-05	Chloromethane	74-87-3	50.50	0.200	0.413	0.490	1.01	1	WG1828189
SVP-29B	L1468315-05	Cyclohexane	110-82-7	84.20	0.200	0.689	0.263	0.906	1	WG1828189
SVP-29B	L1468315-05	Ethanol	64-17-5	46.10	1.25	2.36	37.1	70.0	1	WG1828189
SVP-29B	L1468315-05	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.219	1.23	1	WG1828189
SVP-29B	L1468315-05	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.495	2.45	1	WG1828189
SVP-29B	L1468315-05	Methylene Chloride	75-09-2	84.90	0.200	0.694	0.278	0.965	1	WG1828189
SVP-29B	L1468315-05	2-Propanol	67-63-0	60.10	1.25	3.07	2.81	6.91	1	WG1828189
SVP-29B	L1468315-05	Tetrachloroethylene	127-18-4	166	0.200	1.36	8.50	57.7	1	WG1828189
SVP-30A	L1468315-06	Acetone	67-64-1	58.10	1.25	2.97	2.28	5.42	1	WG1828189
SVP-30A	L1468315-06	Cyclohexane	110-82-7	84.20	0.200	0.689	0.665	2.29	1	WG1828189
SVP-30A	L1468315-06	trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	0.254	1.01	1	WG1828189
SVP-30A	L1468315-06	Ethanol	64-17-5	46.10	1.25	2.36	13.0	24.5	1	WG1828189
SVP-30A	L1468315-06	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.203	1.14	1	WG1828189
SVP-30A	L1468315-06	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.493	2.44	1	WG1828189
SVP-30A	L1468315-06	Heptane	142-82-5	100	0.200	0.818	0.270	1.10	1	WG1828189
SVP-30A	L1468315-06	2-Propanol	67-63-0	60.10	1.25	3.07	1.86	4.57	1	WG1828189
SVP-30A	L1468315-06	Tetrachloroethylene	127-18-4	166	0.200	1.36	13.3	90.3	1	WG1828189
SVP-30A	L1468315-06	Toluene	108-88-3	92.10	0.500	1.88	1.08	4.07	1	WG1828189
			00 0							

DETECTION SUMMARY

			CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
SVP-30A-DUP	L1468315-07	Cyclohexane	110-82-7	84.20	0.200	0.689	0.564	1.94		1	WG1828189
SVP-30A-DUP	L1468315-07	Ethanol	64-17-5	46.10	1.25	2.36	2.97	5.60		1	WG1828189
SVP-30A-DUP	L1468315-07	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.236	1.33		1	WG1828189
SVP-30A-DUP	L1468315-07	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.494	2.44		1	WG1828189
SVP-30A-DUP	L1468315-07	Tetrachloroethylene	127-18-4	166	0.200	1.36	19.3	131		1	WG1828189
SVP-30A-DUP	L1468315-07	Trichloroethylene	79-01-6	131	0.200	1.07	0.512	2.74		1	WG1828189
SVP-30B	L1468315-08	Acetone	67-64-1	58.10	1.25	2.97	4.24	10.1		1	WG1828189
SVP-30B	L1468315-08	Chloromethane	74-87-3	50.50	0.200	0.413	0.250	0.516		1	WG1828189
SVP-30B SVP-30B	L1468315-08	Ethanol	64-17-5	46.10 137.40	1.25 0.200	2.36 1.12	14.8 0.215	27.9 1.21		1	WG1828189
SVP-30B	L1468315-08 L1468315-08	Trichlorofluoromethane Dichlorodifluoromethane	75-69-4 75-71-8	120.92	0.200	0.989	0.542	2.68		1 1	WG1828189 WG1828189
SVP-30B	L1468315-08	Heptane	142-82-5	100.92	0.200	0.989	0.204	0.834		1	WG1828189
SVP-30B	L1468315-08	2-Propanol	67-63-0	60.10	1.25	3.07	1.80	4.42		1	WG1828189
SVP-30B	L1468315-08	Tetrachloroethylene	127-18-4	166	0.200	1.36	29.8	202		1	WG1828189
SVP-30B	L1468315-08	Toluene	108-88-3	92.10	0.500	1.88	0.714	2.69		1	WG1828189
SVP-31A	L1468315-09	Acetone	67-64-1	58.10	1.25	2.97	1.86	4.42		1	WG1828189
SVP-31A	L1468315-09	Chloroform	67-66-3	119	0.200	0.973	0.410	2.00		1	WG1828189
SVP-31A	L1468315-09	Chloromethane	74-87-3	50.50	0.200	0.413	0.348	0.719		1	WG1828189
SVP-31A	L1468315-09	Ethanol	64-17-5	46.10	1.25	2.36	1.43	2.70		1	WG1828189
SVP-31A	L1468315-09	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.363	2.04		1	WG1828189
SVP-31A	L1468315-09	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	1.36	6.73		1	WG1828189
SVP-31A	L1468315-09	Tetrachloroethylene	127-18-4	166	0.200	1.36	11.9	8.08		1	WG1828189
SVP-31B	L1468315-10	Acetone	67-64-1	58.10	1.25	2.97	4.84	11.5		1	WG1828189
SVP-31B	L1468315-10	Cyclohexane	110-82-7	84.20	0.200	0.689	1.64	5.65		1	WG1828189
SVP-31B	L1468315-10	Ethanol	64-17-5	46.10	1.25	2.36	7.86	14.8		1	WG1828189
SVP-31B SVP-31B	<u>L1468315-10</u> L1468315-10	Trichlorofluoromethane Dichlorodifluoromethane	75-69-4 75-71-8	137.40 120.92	0.200 0.200	1.12 0.989	0.537 2.03	3.02 10.0		1 1	WG1828189 WG1828189
SVP-31B	L1468315-10	Tetrachloroethylene	127-18-4	166	0.200	1.36	27.4	186		1	WG1828189
SVP-31B	L1468315-10	Tetrahydrofuran	109-99-9	72.10	0.200	0.590	0.443	1.31		1	WG1828189
SVP-31B	L1468315-10	1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.204	1.11		1	WG1828189
SVP-32A	L1468315-11	Acetone	67-64-1	58.10	1.25	2.97	1.85	4.40		1	WG1828189
SVP-32A	L1468315-11	Chloroform	67-66-3	119	0.200	0.973	0.859	4.18		1	WG1828189
SVP-32A	L1468315-11	Chloromethane	74-87-3	50.50	0.200	0.413	0.234	0.483		1	WG1828189
SVP-32A	L1468315-11	Ethanol	64-17-5	46.10	1.25	2.36	6.56	12.4		1	WG1828189
SVP-32A	L1468315-11	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.678	3.81		1	WG1828189
SVP-32A	L1468315-11	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	2.01	9.94		1	WG1828189
SVP-32A	L1468315-11	Tetrachloroethylene	127-18-4	166	0.200	1.36	10.9	74.0		1	WG1828189
SVP-32B	L1468315-12	Acetone	67-64-1	58.10	1.25	2.97	4.22	10.0		1	WG1828189
SVP-32B	L1468315-12	Chloroform	67-66-3	119	0.200	0.973	0.616	3.00		1	WG1828189
SVP-32B	L1468315-12	Cyclohexane	110-82-7	84.20	0.200	0.689	1.29	4.44		1	WG1828189
SVP-32B	L1468315-12	Ethanol	64-17-5	46.10	1.25	2.36	5.47 0.775	10.3		1	WG1828189
SVP-32B SVP-32B	<u>L1468315-12</u> L1468315-12	Trichlorofluoromethane Dichlorodifluoromethane	75-69-4 75-71-8	137.40 120.92	0.200 0.200	1.12 0.989	3.05	4.36 15.1		1 1	WG1828189 WG1828189
SVP-32B	L1468315-12	Tetrachloroethylene	127-18-4	166	0.200	1.36	27.5	187		1	WG1828189
SVP-32B	L1468315-12	m&p-Xylene	1330-20-7	106	0.400	1.73	0.497	2.15		1	WG1828189
SVP-33A	L1468315-13	Acetone	67-64-1	58.10	1.25	2.97	1.40	3.33		1	WG1828189
SVP-33A	L1468315-13	Benzene	71-43-2	78.10	0.200	0.639	0.336	1.07		1	WG1828189
SVP-33A	L1468315-13	Chloroform	67-66-3	119	0.200	0.973	0.548	2.67		1	WG1828189
SVP-33A	L1468315-13	Chloromethane	74-87-3	50.50	0.200	0.413	0.241	0.498		1	WG1828189
SVP-33A	L1468315-13	Ethanol	64-17-5	46.10	1.25	2.36	9.06	17.1		1	WG1828189
SVP-33A	L1468315-13	Ethylbenzene	100-41-4	106	0.200	0.867	0.320	1.39		1	WG1828189
SVP-33A	L1468315-13	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.719	4.04		1	WG1828189
SVP-33A	L1468315-13	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	2.94	14.5		1	WG1828189
SVP-33A	L1468315-13	Tetrachloroethylene	127-18-4	166	0.200	1.36	25.3	172		1	WG1828189
SVP-33A	L1468315-13	1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.280	1.37		1	WG1828189
SVP-33A	L1468315-13	m&p-Xylene	1330-20-7	106	0.400	1.73	0.584	2.53		1	WG1828189

DETECTION SUMMARY

			CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
SVP-33A-DUP	L1468315-14	Chloroform	67-66-3	119	0.200	0.973	0.581	2.83		1	WG1828189
SVP-33A-DUP	L1468315-14	Cyclohexane	110-82-7	84.20	0.200	0.689	1.78	6.13		1	WG1828189
SVP-33A-DUP	L1468315-14	Ethanol	64-17-5	46.10	1.25	2.36	5.97	11.3		1	WG1828189
SVP-33A-DUP	L1468315-14	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.707	3.97		1	WG1828189
SVP-33A-DUP	L1468315-14	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	3.06	15.1		1	WG1828189
SVP-33A-DUP	L1468315-14	Tetrachloroethylene	127-18-4	166	0.200	1.36	26.5	180		1	WG1828189
SVP-33B	L1468315-15	Chloroform	67-66-3	119	0.200	0.973	0.563	2.74		1	WG1828189
SVP-33B	L1468315-15	Ethanol	64-17-5	46.10	1.25	2.36	2.71	5.11		1	WG1828189
SVP-33B	L1468315-15	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.775	4.36		1	WG1828189
SVP-33B	L1468315-15	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	3.85	19.0		1	WG1828189
SVP-33B	L1468315-15	Tetrachloroethylene	127-18-4	166	0.200	1.36	53.0	360		1	WG1828189

			CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Client ID	Lab Sample ID	Analyte			%	%			
SVP-28B	L1468315-03	Helium	7440-59-7		0.100	0.355		1	WG1828193
SVP-29A	L1468315-04	Helium	7440-59-7		0.100	0.321		1	WG1828193
SVP-29B	L1468315-05	Helium	7440-59-7		0.100	0.137		1	WG1828193
SVP-30A	L1468315-06	Helium	7440-59-7		0.100	0.270		1	WG1828193
SVP-30A-DUP	L1468315-07	Helium	7440-59-7		0.100	0.628		1	WG1828193
SVP-30B	L1468315-08	Helium	7440-59-7		0.100	0.217		1	WG1828193
SVP-31A	L1468315-09	Helium	7440-59-7		0.100	0.438		1	WG1828193
SVP-31B	L1468315-10	Helium	7440-59-7		0.100	0.371		1	WG1828193
SVP-32A	L1468315-11	Helium	7440-59-7		0.100	0.275		1	WG1828193
SVP-32B	L1468315-12	Helium	7440-59-7		0.100	0.369		1	WG1828193
SVP-33A	L1468315-13	Helium	7440-59-7		0.100	0.168		1	WG1828193
SVP-33A-DUP	L1468315-14	Helium	7440-59-7		0.100	0.462		1	WG1828193
SVP-33B	L1468315-15	Helium	7440-59-7		0.100	0.447		1	WG1828193

Collected date/time: 03/04/22 11:05

SAMPLE RESULTS - 01

L1468315

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3		-	_
Acetone	67-64-1	58.10	1.25	2.97	1.63	3.87		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	0.264	0.843		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
	106-99-0	54.10	2.00	4.43	ND	ND ND		1	
1,3-Butadiene									WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	0.219	0.682		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	0.263	0.906		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
I,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
l,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
	78-87-5		0.200	0.793	ND	ND			
,2-Dichloropropane		113						1	WG1828189
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
I,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	4.56	8.60		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
1-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.556	3.12		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.924	4.57		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
I-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	10.2	69.3		1	WG1828189
「etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Collected date/time: 03/04/22 11:05

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	0.215	1.15		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	1.73		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		86.5				WG1828189

Qc

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	ND		1	WG1828077

Collected date/time: 03/03/22 15:59

1468315

Section Part Section	Volatile Organic Co							0 1:5	D11 11	D
Accidency Applied Section Applied Section Applied Ap	Analyto	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Mydenside	•	C7 C4 4	F0.40						1	WC4020400
Service 74,92										
Bearsy Chloride	•									
Name										
International 75-57-2 75-53 0.600 6.71 MIN	•									
Nonementance										
Sabstacheck 196 90 54 10 200 4.43 NO ND 1 Mestgostes Mestand studied 76,18-5 76,10 0.200 0.527 ND ND 1 Mestgostes Mestand studied 56,21-5 184 0.200 0.527 ND ND 1 Mestgostes Mestand studied 56,21-5 184 0.200 0.527 ND ND 1 Mestgostes Mestand studied Mestand										
Carbon of Salfelic 75 H - D 76 H D 0.200 0.622 ND NO 1 WistedBiller Carbon federal folioride 56.23 S 154 0.200 1.26 ND NO 1 WistedBiller Interfederance 75.09-3 64.50 0.200 0.924 ND NO 1 WistedBiller Interfederance 75.09-3 64.50 0.200 0.932 ND NO 1 WistedBiller Interfederance 75.09-3 64.50 0.200 0.33 30 0.682 1 WistedBiller Interfederance 74.87-3 50.50 0.200 0.83 30 0.682 1 WistedBiller Victorontamen 0.94.27-1 42.0 0.200 0.888 ND NO 1 WistedBiller Victorontamen 0.95.40-1 42.0 0.200 1.70 ND NO 1 WistedBiller John Chromother 95.50-1 47.7 0.200 1.20 ND										
Calcular International Color (1) Calculation (1) Calcul	•									
Distributionene										
Disordom 67-66-3										
Chloromethane										
Part										
Cyclobcane 10 92 7 84 20 0.200 0.889 N.D. N.D. 1 Weisb2989 Job momochloromethane 16 93 4 188 0.200 1.70 N.D. N.D. 1 Weisb2989 2. Dickinosobrane 96 93 4 188 0.200 1.20 N.D. N.D. 1 Weisb2989 2. Dickinosobrane 54 1731 147 0.200 1.20 N.D. N.D. 1 Weisb2989 2. Dickinosobrane 10 64-67 147 0.200 1.20 N.D. N.D. 1 Weisb2989 2. Dickinosobrane 10 76-54 98 0.200 0.80 N.D. N.D. 1 Weisb2989 3. Dickinosobrane 75-54 96 90 0.200 0.733 N.D. N.D. 1 Weisb2989 3. Dickinosobrane 16 66-05 96 90 0.200 0.733 N.D. N.D. 1 Weisb2989 3. Dickinosobrane 16 66-05 96 90 0.200 0.733 N.D. <td></td>										
Distribution commentation 124-481 208 0.200 1.70 N.D N.D N.D 1 Wick28189	2-Chlorotoluene									
2-Dibriomoethane	Cyclohexane									
2-Dichlorobenzene 95-50-1 147 0.200 1.20 ND ND 1 WG1828189	Dibromochloromethane									
3-Dichlorobenzene	1,2-Dibromoethane									
A-Dichlorobenzene 106-46-7 147 0.200 1.20 ND ND 1 Wich28189	1,2-Dichlorobenzene									
2-Dichloroethane	1,3-Dichlorobenzene	541-73-1		0.200					1	
A-Dichloroethene 75-34-3 98 0.200 0.802 ND ND 1 WG1828189 -Dichloroethene 75-35-4 96-90 0.200 0.793 ND ND 1 WG1828189 -Dichloroethene 156-69-2 96-90 0.200 0.793 ND ND ND 1 WG1828189 -Dichloroethene 156-60-5 96-90 0.200 0.793 ND ND ND 1 WG1828189 -Dichloropropane 78-87-5 13 0.200 0.924 ND ND ND 1 WG1828189 -Dichloropropane 10061-01-5 111 0.200 0.908 ND ND ND 1 WG1828189 -Dichloropropane 10061-01-6 111 0.200 0.908 ND ND 1 WG1828189 -Dichloropropane 10061-01-6 111 0.200 0.908 ND ND 1 WG1828189 -Dichloropropane 123-91-1 88.10 0.200 0.721 ND ND 1 WG1828189 -Dichloropropane 123-91-1 88.10 0.200 0.721 ND ND 1 WG1828189 -Dichlorodethene 123-91-1 88.10 0.200 0.867 ND ND 1 WG1828189 -Dichlorodethene 123-91-1 88.10 0.200 0.982 ND ND 1 WG1828189 -Dichlorodethene 123-91-1 88.10 0.200 0.982 ND ND 1 WG1828189 -Dichlorodethene 123-91-1 88.10 0.200 0.982 ND ND 1 WG1828189 -Dichlorodethene 123-91-1 88.10 0.200 0.982 ND ND 1 WG1828189 -Dichlorodethene 123-91-1 88.10 0.200 1.12 0.202 1.14 1 WG1828189 -Dichlorodethene 123-91-1 88.10 0.200 1.53 ND ND 1 WG1828189 -Dichlorodethene 123-91-1 187-40 0.200 1.53 ND ND 1 WG1828189 -Dichlorodethene 124-2 17 0.200 1.40 ND ND 1 WG1828189 -Dichlorodethene 124-2 17 0.200 1.40 ND ND 1 WG1828189 -Dichlorodethene 124-2 17 0.200 0.818 ND ND 1 WG1828189 -Dichlorodethene 124-2	1,4-Dichlorobenzene									
Section Sect	1,2-Dichloroethane				0.810				1	
is-1,2-Dichloroethene 156-59-2 96.90 0.200 0.793 ND ND 1 WG1828189 rans-1,2-Dichloroethene 156-60-5 96.90 0.200 0.793 ND ND ND 1 WG1828189 rans-1,2-Dichloropropane 78-87-5 13 0.200 0.924 ND ND ND 1 WG1828189 ris-1,3-Dichloropropane 10061-01-5 111 0.200 0.908 ND ND ND 1 WG1828189 rans-1,3-Dichloropropene 10061-02-6 111 0.200 0.908 ND ND ND 1 WG1828189 rans-1,3-Dichloropropene 10061-02-6 111 0.200 0.908 ND ND ND 1 WG1828189 rans-1,3-Dichloropropene 10061-02-6 111 0.200 0.908 ND ND ND 1 WG1828189 rans-1,3-Dichloropropene 10061-02-6 111 0.200 0.908 ND ND ND 1 WG1828189 rans-1,3-Dichloropropene 10041-4 106 0.200 0.721 ND ND ND 1 WG1828189 rithylbenzene 100-41-4 106 0.200 0.867 ND ND ND 1 WG1828189 rithylbenzene 100-41-4 106 0.200 0.867 ND ND ND 1 WG1828189 rithylbenzene 622-96-8 120 0.200 0.992 ND ND ND 1 WG1828189 rithylbenzene 76-94 137-40 0.200 112 0.200 114 0.200 114 1 WG1828189 rithylbenzene 76-13-1 187-40 0.200 1.53 ND ND ND 1 WG1828189 rithylbenzene 76-13-1 187-40 0.200 1.53 ND ND ND 1 WG1828189 rithylbenzene 76-14-2 171 0.200 1.40 ND ND ND 1 WG1828189 rithylbenzene 100-43-butadene 76-14-2 171 0.200 1.40 ND ND ND 1 WG1828189 rithylbenzene 100-43-butadene 87-88-3 261 0.630 6.73 ND ND ND 1 WG1828189 rithylbenzene 100-43-butadene 87-88-3 261 0.630 6.73 ND ND ND 1 WG1828189 rithylbenzene 100-43-butadene 87-88-3 261 0.630 6.73 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.983 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.989 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.889 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.200 0.889 ND ND ND 1 WG1828189 rithylbenzene 98-87-8 100 0.20	1,1-Dichloroethane			0.200					1	WG1828189
cars.1.2-Dichloroethene 156-60-5 96-90 0.200 0.793 ND ND 1 WG1828189 2-Dichloropropane 78-87-5 113 0.200 0.924 ND ND 1 WG1828189 2-Bichloropropene 100610-15 111 0.200 0.908 ND ND 1 WG1828189 4-Dioxane 123-91-1 88.10 0.200 0.721 ND ND 1 WG1828189 4-Dioxane 123-91-1 88.10 0.200 0.877 ND ND 1 WG1828189 4-Ethyloblene 60-44-4 160 0.200 0.867 ND ND 1 WG1828189 4-Ethyloblene 62-96-8 120 0.200 0.982 ND ND 1 WG1828189 4-Ethyloblene 75-78-8 120,9 0.200 1.22 1.24 1 WG1828189 4-Ethyloblene 75-78-8 120,9 0.200 1.53 ND ND 1 WG1828189 <td>1,1-Dichloroethene</td> <td></td> <td></td> <td>0.200</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>WG1828189</td>	1,1-Dichloroethene			0.200					1	WG1828189
2.2-Dichloropropane 78-87-5 113 0.200 0.924 ND ND 1 WG1828189 3is-3-J-Dichloropropene 10061-02-6 111 0.200 0.908 ND ND 1 WG1828189 4-Dioxane 123-91-1 8810 0.200 0.721 ND ND 1 WG1828189 thanol 64-17-5 46.10 1.25 2.36 17.5 33.0 1 WG1828189 thyberaene 100-41-4 106 0.200 0.9867 ND ND ND 1 WG1828189 tichlyberaene 62-96-8 120 0.200 0.982 ND ND ND 1 WG1828189 tichlyberaene 75-69-4 137.40 0.200 1.12 0.202 1.14 1 WG1828189 tichlyberaene 75-78 120.92 0.200 0.989 0.448 2.22 1 WG1828189 tichlyberaene 76-13-1 187.40 0.200 0.818 ND	cis-1,2-Dichloroethene			0.200					1	WG1828189
sis-1,3-Dichloropropene 10061-01-5 111 0,200 0,908 ND ND 1 WG1828189 rans-1,3-Dichloropropene 10061-02-6 111 0,200 0,908 ND ND 1 WG1828189 A-Hoxane 123-91-1 88.10 0,200 0,721 ND ND 1 WG1828189 dithanol 64-17-5 46.10 1.25 2.36 17.5 33.0 1 WG1828189 dithyloenzene 100-41-4 106 0,200 0.887 ND ND 1 WG1828189 Ethylouene 622-96-8 120 0,200 0.982 ND ND 1 WG1828189 bibliorodifuloromethane 75-78-8 120.92 0.200 0.989 0.448 2.22 1 WG1828189 chlorodifuloromethane 75-18-8 120.99 0.200 1.53 ND ND 1 WG1828189 chlorodifuloromethane 76-18-2 171 0.200 1.40 ND <t< td=""><td>trans-1,2-Dichloroethene</td><td></td><td>96.90</td><td>0.200</td><td>0.793</td><td></td><td></td><td></td><td>1</td><td>WG1828189</td></t<>	trans-1,2-Dichloroethene		96.90	0.200	0.793				1	WG1828189
cars 1,3-Dichloropropene 10061-02-6 111 0.200 0.908 ND ND 1 WGI828189 4-Dioxane 123-91-1 88.10 0.200 0.721 ND ND 1 WGI828189 dithylon 64-17-5 46.10 1.25 2.36 17.5 33.0 1 WGI828189 dithylonere 100-41-4 106 0.200 0.982 ND ND ND 1 WGI828189 E-Ethyltoluene 622-96-8 120 0.200 0.982 ND ND ND 1 WGI828189 Dichlorodifluoromethane 75-69-8 137.40 0.200 1.53 ND ND ND 1 WGI828189 Dichlorodifluoromethane 76-14-1 187.40 0.200 1.53 ND ND ND 1 WGI828189 debichorodifluoromethane 76-14-2 171 0.200 1.818 ND ND ND 1 WGI828189 debichorodifluoromethane 76-19-1 </td <td>1,2-Dichloropropane</td> <td>78-87-5</td> <td></td> <td></td> <td>0.924</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichloropropane	78-87-5			0.924					
A-Dioxane 123-91-1 88.10 0.200 0.721 ND ND 1 1 WG1828189 tithanol 64-17-5 46.10 1.25 2.36 17.5 33.0 1 1 WG1828189 tithylbenzene 100-41-4 106 0.200 0.867 ND ND ND 1 1 WG1828189 tithylbenzene 622-96-8 120 0.200 0.887 ND ND ND 1 1 WG1828189 titholrofluoromethane 75-69-4 137.40 0.200 1.12 0.202 1.14 1 1 WG1828189 titholrofluoromethane 75-71-8 120.92 0.200 0.989 0.448 2.22 1 1 WG1828189 titholrofluoromethane 76-13-1 187.40 0.200 1.53 ND ND ND 1 WG1828189 titholrofluoromethane 76-13-1 187.40 0.200 1.40 ND ND 1 WG1828189 tepptane 142-82-5 100 0.200 0.818 ND ND ND 1 WG1828189 tepptane 142-82-5 100 0.200 0.818 ND ND ND 1 WG1828189 tepstane 142-82-5 100 0.200 0.818 ND ND ND 1 WG1828189 tepstane 110-54-3 86.20 0.630 6.73 ND ND ND 1 WG1828189 televachloro-1,3-butadiene 87-68-3 261 0.630 6.73 ND ND ND 1 WG1828189 televachloro-1,3-butadiene 87-68-3 261 0.630 6.73 ND ND ND 1 WG1828189 televachloro-1,3-butadiene 87-68-3 261 0.630 6.22 ND ND ND 1 WG1828189 televachloro-1,3-butadiene 75-09-2 84.90 0.200 0.9883 ND ND ND 1 WG1828189 teletylene Chloride 75-09-2 84.90 0.200 0.989 ND ND ND 1 WG1828189 teletylene Chloride 75-09-2 84.90 0.200 0.994 ND ND ND 1 WG1828189 teletylene Chloride 88-2-6 100 1.25 5.11 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.11 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.12 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.12 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.12 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.12 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.10 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.15 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.15 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.15 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.15 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.15 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.15 ND ND ND 1 WG1828189 teletylene (MBN) 18-10-1 10.10 1.25 5.15 ND ND	cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908				1	WG1828189
Ethanol 64-17-5 46-10 1.25 2.36 17.5 33.0 1 WG1828189 Ethylbenzee 100-41-4 106 0.200 0.867 ND ND 1 WG1828189 Ethylbenzee 622-96-8 120 0.200 0.982 ND ND ND 1 WG1828189 richlorofuloromethane 75-69-4 137.40 0.200 1.12 0.202 1.14 1 WG1828189 ichlorofuloromethane 75-78-8 120.92 0.200 0.989 0.448 2.22 1 WG1828189 1,2-Trichlorotrifluoroethane 76-13-1 187.40 0.200 1.53 ND ND 1 WG1828189 2-2-Dichlorotetrafluoroethane 76-13-1 187.40 0.200 0.818 ND ND 1 WG1828189 2-2-Dichlorotetrafluoroethane 76-13-1 17 0.200 0.818 ND ND 1 WG1828189 4-Ethylane 10-54-3 86-20 0.630 2.2	trans-1,3-Dichloropropene									
Ethylbonzene 100-41-4 106 0.200 0.867 ND ND ND 1 WG1828189 -Ethyltoluene 622-96-8 120 0.200 0.982 ND ND ND 1 WG1828189 -Ethyltoluene 75-69-4 137.40 0.200 1.12 0.202 1.14 1 WG1828189	1,4-Dioxane		88.10		0.721				1	
Public P	Ethanol	64-17-5	46.10						1	WG1828189
frichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.202 1.14 1 WG1828189 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.448 2.22 1 WG1828189 J.2-Tirichlorotrifluoroethane 76-13-1 187.40 0.200 1.53 ND ND 1 WG1828189 J-2-Dichlorotetrafluoroethane 76-14-2 171 0.200 1.40 ND ND 1 WG1828189 deteptane 142-82-5 100 0.200 0.818 ND ND 1 WG1828189 deteptane 142-82-5 100 0.200 0.818 ND ND 1 WG1828189 detexachloro-1,3-butadiene 87-68-3 261 0.630 6.73 ND ND ND 1 WG1828189 detexachloro-1,3-butadiene 87-68-3 261 0.630 2.72 ND ND ND 1 WG1828189 detexachloro-1,3-butadiene 81-62-6 100.2	Ethylbenzene	100-41-4	106	0.200	0.867				1	
Dicklorodiffluoromethane 75-71-8 120.92 0.200 0.989 0.448 2.22 1 WG1828189 J.2-Tricklorotrifluoroethane 76-13-1 187.40 0.200 1.53 ND ND 1 WG1828189 J.2-Dichlorotetrafluoroethane 76-14-2 171 0.200 1.40 ND ND 1 WG1828189 deptane 142-82-5 100 0.200 0.818 ND ND 1 WG1828189 descachloro-1,3-butadiene 87-68-3 261 0.630 6.73 ND ND 1 WG1828189 descachloro-1,3-butadiene 100-54-3 86.20 0.630 2.22 ND ND 1 WG1828189 descachloro-1,3-butadiene 100-54-3 86.20 0.630 2.22 ND ND 1 WG1828189 descachloro-1,3-butadiene 100-54-3 86.20 0.630 0.983 ND ND ND 1 WG1828189 Welexane 100-54-3 86.20 0.20	4-Ethyltoluene		120	0.200	0.982	ND	ND		1	WG1828189
1,1,2-Trichlorotifluoroethane 76-13-1 187.40 0.200 1.53 ND ND 1 WG1828189 2,2-Dichlorotetrafluoroethane 76-14-2 171 0.200 1.40 ND ND ND 1 WG1828189 detatane 142-82-5 100 0.200 0.818 ND ND ND 1 WG1828189 Herbane 110-54-3 86.20 0.630 2.22 ND ND ND 1 WG1828189 Methylene Chloride 75-09-2 84.90 0.200 0.983 ND ND ND 1 WG1828189 Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND ND 1 WG1828189 Methyl Eventanone (MEK) 78-93-3 72.10 1.25 5.12 ND ND 1 WG1828189 Methyl-2-pentanone (MEK) 78-93-3 72.10 1.25 5.12 ND ND ND 1 WG1828189 METHYL-2-pentanone (M	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.202	1.14		1	WG1828189
22-Dichlorotetrafluoroethane 76-14-2 171 0.200 1.40 ND ND ND 1 WG1828189 detatane 142-82-5 100 0.200 0.818 ND ND ND 1 WG1828189 detachloro-1,3-butadiene 87-68-3 261 0.630 6.73 ND ND 1 WG1828189 behave 10-54-3 86.20 0.630 2.22 ND ND 1 WG1828189 behave 10-54-3 86.20 0.630 2.22 ND ND 1 WG1828189 behave 20-20 0.200 0.983 ND ND 1 WG1828189 Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND ND 1 WG1828189 Butyl Wethyl Ketone 591-78-6 100 1.25 5.12 ND ND ND 1 WG1828189 Butyl Wethyl	Dichlorodifluoromethane			0.200					1	WG1828189
Reptane 142-82-5 100 0.200 0.818 ND ND 1 WG1828189 Hexachloro-1,3-butadiene 87-68-3 261 0.630 6.73 ND ND 1 WG1828189 Hexane 110-54-3 86.20 0.630 2.22 ND ND 1 WG1828189 Methylene Chloride 75-09-2 84.90 0.200 0.694 ND ND 1 WG1828189 Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND 1 WG1828189 Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND 1 WG1828189 Methyl Ruthyl Pepentanone (MEK) 78-93-3 72.10 1.25 5.12 ND ND 1 WG1828189 Methyl methacrylate 80-62-6 100.12 0.200 0.819 ND ND 1 WG1828189 Methyl methacrylate 163-0-4-4 88.10 0.200 0.721 ND ND	1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
decachloro-1,3-butadiene 87-68-3 261 0.630 6.73 ND ND 1 WG1828189 a-Hexane 110-54-3 86.20 0.630 2.22 ND ND 1 WG1828189 sopropylbenzene 98-82-8 120.20 0.200 0.983 ND ND ND 1 WG1828189 Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND ND 1 WG1828189 B-Butanone (MEK) 78-93-3 72.10 1.25 5.12 ND ND ND 1 WG1828189 B-Butanone (MEK) 78-93-3 72.10 1.25 5.12 ND ND ND 1 WG1828189 B-Butanone (MEK) 78-93-3 72.10 1.25 5.12 ND ND ND 1 WG1828189 Methyl-2-pentanone (MIEK) 108-10-1 100.10 1.25 5.12 ND ND ND 1 WG1828189 MED ATTER (METHYL) 100	1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
No.	Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Sepropylbenzene 98-82-8 120.20 0.200 0.983 ND ND ND 1 WG1828189	Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
Methylene Chloride 75-09-2 84.90 0.200 0.694 ND ND 1 WG1828189 Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND ND 1 WG1828189 P-Butanone (MEK) 78-93-3 72.10 1.25 3.69 ND ND ND 1 WG1828189 Methyl-2-pentanone (MIBK) 108-10-1 100.10 1.25 5.12 ND ND ND 1 WG1828189 Methyl methacrylate 80-62-6 100.12 0.200 0.819 ND ND ND 1 WG1828189 Methyl methacrylate 80-62-6 100.12 0.200 0.721 ND ND ND 1 WG1828189 Maphthalene 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 67-63-0 60.10 1.25 3.07 ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 1.37 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 0.590 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 0.590 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 0.590 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 0.590 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 0.590 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 0.590 ND ND ND 1 WG1828189 Methyl methacrylate 91-20-3 128 0.200 0.590 ND ND ND 1 WG1828189	n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
Methyl Butyl Ketone 591-78-6 100 1.25 5.11 ND ND ND 1 WG1828189 2-Butanone (MEK) 78-93-3 72.10 1.25 3.69 ND ND ND 1 WG1828189 3-Hethyl-2-pentanone (MIBK) 108-10-1 100.10 1.25 5.12 ND ND ND 1 WG1828189 4-Hethyl-2-pentanone (MIBK) 108-10-1 100.10 1.25 5.12 ND ND ND 1 WG1828189 4-Hethyl methacrylate 80-62-6 100.12 0.200 0.819 ND ND ND 1 WG1828189 4-Rethyl methacrylate 81-63-04-4 88.10 0.200 0.721 ND ND ND 1 WG1828189 4-Propanol 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 4-Propanol 67-63-0 60.10 1.25 3.07 ND ND ND 1 WG1828189 4-Propanol 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 4-Rethyl methacrylate 80-62-6 ND ND ND 1 WG1828189 4-Propanol 79-34-5 104 0.200 0.851 ND ND ND 1 WG1828189 4-Propanol 100-42-5 104 0.200 1.37 ND ND ND 1 WG1828189 4-Retrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 4-Retrachloroethylene 108-88-3 92.10 0.500 1.88 ND ND ND ND 1 WG1828189 4-Retrachloroethylene 108-88-3 92.10 0.500 1.88 ND ND ND ND 1 WG1828189	Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
2-Butanone (MEK) 78-93-3 72.10 1.25 3.69 ND ND ND 1 WG1828189 1-Methyl-2-pentanone (MIBK) 108-10-1 100.10 1.25 5.12 ND ND ND 1 WG1828189 Methyl methacrylate 80-62-6 100.12 0.200 0.819 ND ND ND 1 WG1828189 MTBE 1634-04-4 88.10 0.200 0.721 ND ND ND 1 WG1828189 Naphthalene 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 P-Propanol 67-63-0 60.10 1.25 3.07 ND ND ND 1 WG1828189 P-propene 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 Styrene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 Styrene 100-42-5 168 0.200 1.37 ND ND ND 1 WG1828189 Fetrachloroethane 79-34-5 168 0.200 1.37 ND ND ND 1 WG1828189 Fetrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Fetrachloroethylene 109-99-9 72.10 0.200 0.590 ND ND ND 1 WG1828189 Follower 108-88-3 92.10 0.500 1.88 ND ND ND 1 WG1828189	Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Hethyl-2-pentanone (MIBK) 108-10-1 100.10 1.25 5.12 ND ND ND 1 WG1828189 Methyl methacrylate 80-62-6 100.12 0.200 0.819 ND ND ND ND 1 WG1828189 MTBE 1634-04-4 88.10 0.200 0.721 ND ND ND ND 1 WG1828189 Maphthalene 91-20-3 128 0.630 3.30 ND ND ND ND 1 WG1828189 Peropanol 67-63-0 60.10 1.25 3.07 ND ND ND 1 WG1828189 Peropanol 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 Edyrene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 Edyrene 79-34-5 168 0.200 1.37 ND ND ND 1 WG1828189 Edyrene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Edyrene 109-99-9 72.10 0.200 0.590 ND ND ND 1 WG1828189 Edyrene 108-88-3 92.10 0.500 1.88 ND ND ND 1 WG1828189 Edyrene 108-88-3 92.10 0.500 1.88 ND ND ND ND 1 WG1828189 Edyrene 108-88-3 92.10 0.500 1.88 ND ND ND ND 1 WG1828189 Edyrene 108-88-3 92.10 0.500 1.88 ND ND ND ND 1 WG1828189	Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
Methyl methacrylate 80-62-6 100.12 0.200 0.819 ND ND ND 1 WG1828189 MTBE 1634-04-4 88.10 0.200 0.721 ND ND 1 WG1828189 Maphthalene 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 Propanol 67-63-0 60.10 1.25 3.07 ND ND ND 1 WG1828189 Propene 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 Styrene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 Appleach 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Fetrachloroethylene 127-18-4 166 0.200 0.590 ND ND 1 WG1828189 Follower 109-99-9 72.10 0.200 0.590 <td>2-Butanone (MEK)</td> <td>78-93-3</td> <td>72.10</td> <td>1.25</td> <td>3.69</td> <td>ND</td> <td>ND</td> <td></td> <td>1</td> <td>WG1828189</td>	2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
MTBE 1634-04-4 88.10 0.200 0.721 ND ND ND 1 WG1828189 Naphthalene 91-20-3 128 0.630 3.30 ND ND 1 WG1828189 2-Propanol 67-63-0 60.10 1.25 3.07 ND ND 1 WG1828189 Propene 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 Styrene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 All Cyrene 79-34-5 168 0.200 1.37 ND ND ND 1 WG1828189 Fetrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Fetrachloroethylene 109-99-9 72.10 0.200 0.590 ND ND 1 WG1828189 Follower 108-88-3 92.10 0.500 1.88 ND <td>4-Methyl-2-pentanone (MIBK)</td> <td>108-10-1</td> <td>100.10</td> <td>1.25</td> <td>5.12</td> <td>ND</td> <td>ND</td> <td></td> <td>1</td> <td>WG1828189</td>	4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Naphthalene 91-20-3 128 0.630 3.30 ND ND ND 1 WG1828189 2-Propanol 67-63-0 60.10 1.25 3.07 ND ND 1 WG1828189 Propene 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 Styrene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 4,1,2,2-Tetrachloroethane 79-34-5 168 0.200 1.37 ND ND ND 1 WG1828189 Fetrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Foluene 108-88-3 92.10 0.500 1.88 ND ND ND 1 WG1828189	Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
2-Propanol 67-63-0 60.10 1.25 3.07 ND ND ND 1 WG1828189 2-Propene 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 2-Propene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 2-Propene 100-42-5 168 0.200 1.37 ND ND ND 1 WG1828189 2-Propene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 2-Propene 109-99-9 72.10 0.200 0.590 ND ND ND 1 WG1828189 2-Propene 108-88-3 92.10 0.500 1.88 ND ND ND 1 WG1828189	MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Propene 115-07-1 42.10 1.25 2.15 ND ND ND 1 WG1828189 Styrene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 1,1,2,2-Tetrachloroethane 79-34-5 168 0.200 1.37 ND ND ND 1 WG1828189 Tetrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Tetrachloroethydrofuran 109-99-9 72.10 0.200 0.590 ND ND ND 1 WG1828189 Toluene 108-88-3 92.10 0.500 1.88 ND ND ND 1 WG1828189	Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
Styrene 100-42-5 104 0.200 0.851 ND ND ND 1 WG1828189 4,1,2,2-Tetrachloroethane 79-34-5 168 0.200 1.37 ND ND ND 1 WG1828189 6 etrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 6 etrahydrofuran 109-99-9 72.10 0.200 0.590 ND ND ND 1 WG1828189 6 oluene 108-88-3 92.10 0.500 1.88 ND ND ND 1 WG1828189	2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
1,1,2,2-Tetrachloroethane 79-34-5 168 0.200 1.37 ND ND ND 1 WG1828189 Tetrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Tetrahydrofuran 109-99-9 72.10 0.200 0.590 ND ND 1 WG1828189 Toluene 108-88-3 92.10 0.500 1.88 ND ND 1 WG1828189	Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Fetrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Fetrahydrofuran 109-99-9 72.10 0.200 0.590 ND ND 1 WG1828189 Foluene 108-88-3 92.10 0.500 1.88 ND ND 1 WG1828189	Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
Tetrachloroethylene 127-18-4 166 0.200 1.36 14.1 95.7 1 WG1828189 Tetrahydrofuran 109-99-9 72.10 0.200 0.590 ND ND 1 WG1828189 Toluene 108-88-3 92.10 0.500 1.88 ND ND 1 WG1828189	1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrahydrofuran 109-99-9 72.10 0.200 0.590 ND ND 1 WG1828189 Foluene 108-88-3 92.10 0.500 1.88 ND ND 1 WG1828189	Tetrachloroethylene	127-18-4		0.200	1.36	14.1			1	
foluene 108-88-3 92.10 0.500 1.88 ND ND 1 <u>WG1828189</u>	Tetrahydrofuran									
	Toluene								1	
	1,2,4-Trichlorobenzene									

Collected date/time: 03/03/22 15:59

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	0.696	3.73		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		87.5				WG1828189

Qc

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	ND		1	WG1828077

Collected date/time: 03/03/22 14:26

1468315

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	** ·** ·		ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	1.29	3.07		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND ND	ND ND		1	WG1828189
,	75-27-4	164	0.200	1.04	ND	ND		1	
Bromodichloromethane								1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND			WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189
hloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG1828189
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1828189
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
	156-59-2	96.90		0.793	0.342	1.36		1	
is-1,2-Dichloroethene			0.200					1	WG1828189
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	0.355	1.41			WG1828189
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
thanol	64-17-5	46.10	1.25	2.36	1.54	2.90		1	WG1828189
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.233	1.31		1	WG1828189
oichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.534	2.64		1	WG1828189
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
lethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND ND	ND ND		1	WG1828189
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
lethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
etrachloroethylene	127-18-4	166	0.200	1.36	56.5	384		1	WG1828189
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
oluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Collected date/time: 03/03/22 14:26

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.292	1.59		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	8.16	43.7		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		85.2				WG1828189

Qc

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.355		1	WG1828193

Collected date/time: 03/04/22 12:25

/olatile Organ	ic Compound	ls (MS) by Meth	nod TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	1.35	3.21		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	0.327	0.675		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	0.229	0.789		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
I,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
	78-87-5	113	0.200	0.793	ND	ND		1	
1,2-Dichloropropane	10061-01-5	111	0.200	0.924	ND	ND ND		1	WG1828189
cis-1,3-Dichloropropene									WG1828189
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	2.12	4.00		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.219	1.23		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.468	2.31		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	16.9	115		1	WG1828189
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
		00.40	0.500	1.88	ND	ND		1	WC1020100
Toluene	108-88-3	92.10	0.500	1.00	ND	ND		1	WG1828189

Collected date/time: 03/04/22 12:25

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	0.818	4.38		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		85.0				WG1828189

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.321		1	WG1828193

L1468315

Collected date/time: 03/04/22 12:49

/olatile Organic Compounds (MS) by Method TO-15										
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
Acetone	67-64-1	58.10	1.25	2.97	3.82	9.08		1	WG1828189	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189	
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189	
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189	
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189	
Chloromethane	74-87-3	50.50	0.200	0.413	0.490	1.01		1	WG1828189	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189	
Cyclohexane	110-82-7	84.20	0.200	0.689	0.263	0.906		1	WG1828189	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189	
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189	
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189	
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189	
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189	
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189	
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189	
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189	
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189	
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189	
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189	
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189	
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189	
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189	
Ethanol	64-17-5	46.10	1.25	2.36	37.1	70.0		1	WG1828189	
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189	
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189	
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.219	1.23		1	WG1828189	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.495	2.45		1	WG1828189	
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189	
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189	
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189	
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189	
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189	
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189	
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.278	0.965		1	WG1828189	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189	
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189	
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189	
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189	
2-Propanol	67-63-0	60.10	1.25	3.07	2.81	6.91		1	WG1828189	
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189	
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189	
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189	
Tetrachloroethylene	127-18-4	166	0.200	1.36	8.50	57.7		1	WG1828189	
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189	
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189	
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189	

Collected date/time: 03/04/22 12:49

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		85.2				WG1828189

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.137		1	WG1828193

Collected date/time: 03/04/22 13:28

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	0.10 "		ppbv	ug/m3	ppbv	ug/m3	<u>quamer</u>	2	5000
Acetone	67-64-1	58.10	1.25	2.97	2.28	5.42		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
	100-44-7	127	0.200	1.04	ND ND	ND ND		1	
Benzyl Chloride									WG1828189
dromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189
hloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG1828189
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
yclohexane	110-82-7	84.20	0.200	0.689	0.665	2.29		1	WG1828189
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
	156-59-2	96.90		0.793	ND	ND		1	
is-1,2-Dichloroethene			0.200					1	WG1828189
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	0.254	1.01			WG1828189
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
thanol	64-17-5	46.10	1.25	2.36	13.0	24.5		1	WG1828189
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.203	1.14		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.493	2.44		1	WG1828189
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
leptane	142-82-5	100	0.200	0.818	0.270	1.10		1	WG1828189
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
lethyl methacrylate	80-62-6	100.10	0.200	0.819	ND ND	ND ND		1	WG1828189
ТВЕ									
	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
aphthalene	91-20-3	128	0.630	3.30	ND 100	ND		1	WG1828189
-Propanol	67-63-0	60.10	1.25	3.07	1.86	4.57		1	WG1828189
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
etrachloroethylene	127-18-4	166	0.200	1.36	13.3	90.3		1	WG1828189
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
oluene	108-88-3	92.10	0.500	1.88	1.08	4.07		1	WG1828189
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Ss

Collected date/time: 03/04/22 13:28

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		85.1				WG1828189

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.270		1	WG1828193

Collected date/time: 03/04/22 13:28

SAMPLE RESULTS - 07

Volatile Organic Co	•								
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	ND	ND		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	0.564	1.94		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	2.97	5.60		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.236	1.33		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.494	2.44		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	19.3	131		1	WG1828189
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Collected date/time: 03/04/22 13:28

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	0.512	2.74		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1.4-Bromofluorobenzene	460-00-4	175	60.0-140		86.4				WG1828189

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.628		1	WG1828193

L1468315

Collected date/time: 03/04/22 13:59

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	4.24	10.1		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
	75-00-3	64.50		0.528	ND	ND		1	
Chloroethane			0.200						WG1828189
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	0.250	0.516		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	14.8	27.9		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	ND ND	ND		1	WG1828189
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
4-Ethyltoluerie Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.215	1.21		1	
	75-69- 4 75-71-8	120.92	0.200	0.989					WG1828189
Dichlorodifluoromethane					0.542	2.68		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	0.204	0.834		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	1.80	4.42		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
I,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND ND	ND ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	29.8	202 ND		1	WG1828189
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
Toluene	108-88-3	92.10	0.500	1.88	0.714	2.69		1	WG1828189
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Collected date/time: 03/04/22 13:59

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1.4-Bromofluorobenzene	460-00-4	175	60.0-140		85.7				WG1828189

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.217		1	WG1828193

Collected date/time: 03/02/22 14:02

1468315

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	"		ppbv	ug/m3	ppbv	ug/m3	340.000		
Acetone	67-64-1	58.10	1.25	2.97	1.86	4.42		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND ND	ND ND		1	WG1828189
*	75-27-4	164	0.200	1.34	ND	ND		1	
Bromodichloromethane									WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	0.410	2.00		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	0.348	0.719		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
	156-59-2	96.90		0.793	ND	ND		1	
cis-1,2-Dichloroethene			0.200					1	WG1828189
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND			WG1828189
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	1.43	2.70		1	WG1828189
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.363	2.04		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	1.36	6.73		1	WG1828189
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND ND	ND ND		1	WG1828189
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
1TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
laphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
etrachloroethylene	127-18-4	166	0.200	1.36	11.9	80.8		1	WG1828189
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
oluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Collected date/time: 03/02/22 14:02

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Docult	Docult	Qualifier	Dilution	Datah
	CAS #	MOI. Wt.	KDLI	KDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		85.4				WG1828189

Qc

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.438		1	WG1828193

Collected date/time: 03/02/22 14:40

Volatile Organic Compounds (MS) by Method TO-15

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			_
Acetone	67-64-1	58.10	1.25	2.97	4.84	11.5		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	1.64	5.65		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	7.86	14.8		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.537	3.02		1	WG1828189
	75-09- 4 75-71-8		0.200	0.989					
Dichlorodifluoromethane		120.92			2.03	10.0		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	27.4	186		1	WG1828189
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	0.443	1.31		1	WG1828189
Foluene	108-88-3	92.10	0.500	1.88		ND		1	
					ND				WG1828189
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Ss

Collected date/time: 03/02/22 14:40

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.204	1.11		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		85.1				WG1828189

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			%	%			
Helium	7440-59-7		0.100	0.371		1	WG1828193

Collected date/time: 03/03/22 13:31

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	1.85	4.40		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	0.859	4.18		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	0.234	0.483		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
I,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
I,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
1,2-Dichloropropane	78-87-5	113	0.200	0.793	ND	ND		1	WG1828189
	10061-01-5	111	0.200	0.924	ND	ND ND		1	WG1828189
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
		88.10		0.721	ND	ND ND		1	
1,4-Dioxane	123-91-1		0.200						WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	6.56	12.4		1	WG1828189
Ethylbenzene 4 Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.678	3.81		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	2.01	9.94		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	10.9	74.0		1	WG1828189
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
Foluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189
,,,, , memorobenzene	120 02 1	101	0.000	1.00	110	ND			01020103

Collected date/time: 03/03/22 13:31

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1.4-Bromofluorobenzene	460-00-4	175	60.0-140		84.1				WG1828189

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			%	%			
Helium	7440-59-7		0.100	0.275		1	WG1828193

L1468315

Collected date/time: 03/03/22 14:03

Volatile	Organic	Compounds	(MS) b	v Method	TO-15
V Oldtiic	Organic	Compounds	(1410) D	y IVICTIOU	1010

Volatile Organic Co	mpounds	(IVIO) Dy	MCtiloa	10-13							
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>		
Analyte			ppbv	ug/m3	ppbv	ug/m3					
Acetone	67-64-1	58.10	1.25	2.97	4.22	10.0		1	WG1828189		
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189		
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189		
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189		
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189		
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189		
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189		
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189		
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189		
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189		
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189		
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189		
Chloroform	67-66-3	119	0.200	0.973	0.616	3.00		1	WG1828189		
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG1828189		
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189		
Cyclohexane	110-82-7	84.20	0.200	0.689	1.29	4.44 ND		1	WG1828189		
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189		
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189		
l,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189		
l,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189		
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189		
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189		
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189		
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189		
tis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189		
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189		
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189		
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189		
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189		
I,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189		
Ethanol	64-17-5	46.10	1.25	2.36	5.47	10.3		1	WG1828189		
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189		
1-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189		
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.775	4.36		1	WG1828189		
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	3.05	15.1		1	WG1828189		
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189		
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189		
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189		
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189		
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189		
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND					
Methylene Chloride		84.90	0.200		ND ND	ND ND		1	WG1828189		
,	75-09-2 501-79-6			0.694				1	WG1828189		
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189		
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189		
I-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189		
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189		
ИТВЕ	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189		
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189		
?-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189		
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189		
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189		
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189		
Tetrachloroethylene	127-18-4	166	0.200	1.36	27.5	187		1	WG1828189		
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189		
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189		
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189		

Ss

Cn

Ds

Collected date/time: 03/03/22 14:03

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	0.497	2.15		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1.4-Bromofluorobenzene	460-00-4	175	60.0-140		85.5				WG1828189

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.369		1	WG1828193

Collected date/time: 03/03/22 14:50

L1468315

Ss

Cn

Ds

Ğl

Volatile Organic Co	ompounds	(MS) by	Method 7	ΓΟ-15					
	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	1.40	3.33		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	0.336	1.07		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	0.548	2.67		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	0.241	0.498		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	9.06	17.1		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	0.320	1.39		1	WG1828189
I-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
Frichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.719	4.04		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	2.94	14.5		1	WG1828189
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.030	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
P-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.10	0.200	0.819	ND ND	ND ND		1	WG1828189 WG1828189
иетнут тетнастугате ИТВЕ	1634-04-4	88.10	0.200	0.819	ND ND	ND		1	WG1828189 WG1828189
			0.200	3.30	ND ND	ND ND		1	
laphthalene Propanol	91-20-3 67-63-0	128 60.10		3.30	ND ND	ND			WG1828189
-Propanol			1.25					1	WG1828189
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
etrachloroethylene	127-18-4	166	0.200	1.36	25.3	172 ND		1	WG1828189
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
oluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

Collected date/time: 03/03/22 14:50

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.280	1.37		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	0.584	2.53		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		86.5				WG1828189

Qc

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.168		1	WG1828193

Collected date/time: 03/03/22 14:49

SAMPLE RESULTS - 14

.1468315

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	ND	ND		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.524	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	0.581	2.83		1	WG1828189
								1	
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND			WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	1.78	6.13		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG1828189
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	5.97	11.3		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.707	3.97		1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	3.06	15.1		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
1,2-Dichlorotetrafluoroethane	76-13-1	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73		ND			
					ND			1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	26.5	180		1	WG1828189
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189
,z, - -michioropenzene	120-02-1	101	0.030	4.00	ND	ND			WUIOZOIO

PAGE:

36 of 50

Collected date/time: 03/03/22 14:49

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1.4-Bromofluorobenzene	460-00-4	175	60.0-140		85.3				WG1828189

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.462		1	WG1828193

Collected date/time: 03/03/22 15:23

1468315

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	ND	ND		1	WG1828189
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG1828189
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG1828189
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG1828189
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG1828189
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG1828189
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG1828189
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG1828189
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG1828189
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG1828189
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG1828189
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG1828189
Chloroform	67-66-3	119	0.200	0.973	0.563	2.74		1	WG1828189
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG1828189
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG1828189
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG1828189
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG1828189
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG1828189
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG1828189
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG1828189
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG1828189
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG1828189
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG1828189
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG1828189
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG1828189
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG1828189
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG1828189
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
trans-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG1828189
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG1828189
Ethanol	64-17-5	46.10	1.25	2.36	2.71	5.11		1	WG1828189
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG1828189
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG1828189
	75-69-4	137.40	0.200		0.775	4.36		1	
Trichlorofluoromethane				1.12				1	WG1828189
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	3.85	19.0		1	WG1828189
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG1828189
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG1828189
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG1828189
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG1828189
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG1828189
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG1828189
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG1828189
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG1828189
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG1828189
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG1828189
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG1828189
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG1828189
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG1828189
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG1828189
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG1828189
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG1828189
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG1828189
Tetrachloroethylene	127-18-4	166	0.200	1.36	53.0	360		1	WG1828189
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG1828189
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG1828189
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG1828189

³Ss

Cn

Ds

Ğl

ΆΙ

Collected date/time: 03/03/22 15:23

Volatile Organic Compounds (MS) by Method TO-15

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG1828189
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG1828189
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG1828189
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG1828189
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG1828189
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG1828189
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG1828189
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG1828189
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG1828189
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG1828189
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG1828189
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		84.5				WG1828189

Qc

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.447		1	WG1828193

WG1828189

QUALITY CONTROL SUMMARY

L1468315-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

Method Blank (MB)

(MR) D3767/71 2 02/06/2	ე 1ე·⊋E			
(MB) R3767471-3 03/06/2	MB Result	MD Qualifier	MB MDL	MB RDL
Analyto		MB Qualifier		
Analyte	ppbv		ppbv	ppbv
Acetone	U		0.584	1.25
Allyl Chloride	U		0.114	0.200
Benzene Benzene	U		0.0715	0.200
Benzyl Chloride	U		0.0598	0.200
Bromodichloromethane	U		0.0702	0.200
Bromoform	U		0.0732	0.600
Bromomethane	U		0.0982	0.200
1,3-Butadiene	U		0.104	2.00
Carbon disulfide	U		0.102	0.200
Carbon tetrachloride	U		0.0732	0.200
Chlorobenzene	U		0.0832	0.200
Chloroethane	U		0.0996	0.200
Chloroform	U		0.0717	0.200
Chloromethane	U		0.103	0.200
2-Chlorotoluene	U		0.0828	0.200
Cyclohexane	U		0.0753	0.200
Dibromochloromethane	U		0.0727	0.200
1,2-Dibromoethane	U		0.0721	0.200
1,2-Dichlorobenzene	U		0.128	0.200
1,3-Dichlorobenzene	U		0.182	0.200
1,4-Dichlorobenzene	U		0.0557	0.200
1,2-Dichloroethane	U		0.0700	0.200
1,1-Dichloroethane	U		0.0723	0.200
1,1-Dichloroethene	U		0.0762	0.200
cis-1,2-Dichloroethene	U		0.0784	0.200
trans-1,2-Dichloroethene	U		0.0673	0.200
1,2-Dichloropropane	U		0.0760	0.200
cis-1,3-Dichloropropene	U		0.0689	0.200
trans-1,3-Dichloropropene	U		0.0728	0.200
1,4-Dioxane	U		0.0833	0.200
Ethanol	U		0.265	1.25
Ethylbenzene	U		0.0835	0.200
4-Ethyltoluene	U		0.0783	0.200
Trichlorofluoromethane	U		0.0819	0.200
Dichlorodifluoromethane	U		0.137	0.200
1,1,2-Trichlorotrifluoroethane	U		0.0793	0.200
1,2-Dichlorotetrafluoroethane	U		0.0890	0.200
Heptane	U		0.104	0.200
Hexachloro-1,3-butadiene	U		0.105	0.630
n-Hexane	U		0.206	0.630

WG1828189

QUALITY CONTROL SUMMARY

L1468315-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

Method Blank (MB)

(S) 1,4-Bromofluorobenzene

ACCOUNT:

Volatile Organic Compounds (MS) by Method TO-15

(MB) R3767471-3 03/06/22 12:35 MB MDL MB RDL MB Result MB Qualifier Analyte ppbv ppbv ppbv Isopropylbenzene U 0.0777 0.200 U 0.0979 0.200 Methylene Chloride Methyl Butyl Ketone U 0.133 1.25 U 0.0814 1.25 2-Butanone (MEK) 4-Methyl-2-pentanone (MIBK) U 0.0765 1.25 Methyl Methacrylate U 0.0876 0.200 MTBE U 0.0647 0.200 Naphthalene U 0.350 0.630 2-Propanol U 0.264 1.25 0.142 0.0932 1.25 Propene 0.0788 0.200 Styrene U 0.0743 1,1,2,2-Tetrachloroethane 0.200 Tetrachloroethylene U 0.0814 0.200 U 0.0734 0.200 Tetrahydrofuran Toluene U 0.0870 0.500 1,2,4-Trichlorobenzene U 0.148 0.630 1,1,1-Trichloroethane U 0.0736 0.200 1,1,2-Trichloroethane 0.0775 0.200 U 0.0680 0.200 Trichloroethylene 1,2,4-Trimethylbenzene 0.0764 0.200 U 0.0779 1,3,5-Trimethylbenzene 0.200 2,2,4-Trimethylpentane U 0.133 0.200 Vinyl chloride U 0.0949 0.200 Vinyl Bromide U 0.0852 0.200 U 0.200 Vinyl acetate 0.116 m&p-Xylene U 0.135 0.400 o-Xylene U 0.0828 0.200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

60.0-140

PROJECT:

(LCS) R3767471-1 03/06	5/22 09:34 • (LCS	D) R3767471-2	2 03/06/22 11:5	52						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	3.79	3.77	101	101	70.0-130			0.529	25
Allyl Chloride	3.75	3.43	3.51	91.5	93.6	70.0-130			2.31	25
Benzene	3.75	4.04	4.01	108	107	70.0-130			0.745	25
Benzyl Chloride	3.75	3.73	3.73	99.5	99.5	70.0-152			0.000	25
Bromodichloromethane	3.75	3.86	3.84	103	102	70.0-130			0.519	25

Ss

Cn

Ds

Sr

Qc

Ğl

Sc

QUALITY CONTROL SUMMARY

L1468315-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3767471-1 03/06/22 09:34 • (LCSD) R3767471-2 03/06/22 11:52

(LC3) R3/0/4/1-1 03/00/2	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Bromoform	3.75	3.74	3.67	99.7	97.9	70.0-130			1.89	25
Bromomethane	3.75	3.94	3.39	105	90.4	70.0-130			15.0	25
1,3-Butadiene	3.75	3.57	3.38	95.2	90.1	70.0-130			5.47	25
Carbon disulfide	3.75	3.54	3.60	94.4	96.0	70.0-130			1.68	25
Carbon tetrachloride	3.75	3.82	3.86	102	103	70.0-130			1.04	25
Chlorobenzene	3.75	4.14	4.13	110	110	70.0-130			0.242	25
Chloroethane	3.75	3.77	3.32	101	88.5	70.0-130			12.7	25
Chloroform	3.75	3.78	3.78	101	101	70.0-130			0.000	25
Chloromethane	3.75	3.95	4.01	105	107	70.0-130			1.51	25
2-Chlorotoluene	3.75	3.86	3.85	103	103	70.0-130			0.259	25
Cyclohexane	3.75	4.01	4.03	107	107	70.0-130			0.498	25
Dibromochloromethane	3.75	4.00	3.95	107	105	70.0-130			1.26	25
1,2-Dibromoethane	3.75	4.05	3.99	108	106	70.0-130			1.49	25
1,2-Dichlorobenzene	3.75	4.00	3.82	107	102	70.0-130			4.60	25
1,3-Dichlorobenzene	3.75	3.99	3.94	106	105	70.0-130			1.26	25
1,4-Dichlorobenzene	3.75	4.05	3.99	108	106	70.0-130			1.49	25
,2-Dichloroethane	3.75	3.93	3.94	105	105	70.0-130			0.254	25
,1-Dichloroethane	3.75	3.60	3.62	96.0	96.5	70.0-130			0.554	25
1,1-Dichloroethene	3.75	3.72	3.71	99.2	98.9	70.0-130			0.269	25
cis-1,2-Dichloroethene	3.75	3.55	3.64	94.7	97.1	70.0-130			2.50	25
trans-1,2-Dichloroethene	3.75	3.62	3.64	96.5	97.1	70.0-130			0.551	25
1,2-Dichloropropane	3.75	3.94	3.87	105	103	70.0-130			1.79	25
cis-1,3-Dichloropropene	3.75	3.87	3.86	103	103	70.0-130			0.259	25
trans-1,3-Dichloropropene	3.75	3.72	3.73	99.2	99.5	70.0-130			0.268	25
1,4-Dioxane	3.75	3.94	3.87	105	103	70.0-140			1.79	25
Ethanol	3.75	3.47	3.41	92.5	90.9	55.0-148			1.74	25
Ethylbenzene	3.75	3.83	3.80	102	101	70.0-130			0.786	25
4-Ethyltoluene	3.75	3.84	3.79	102	101	70.0-130			1.31	25
Trichlorofluoromethane	3.75	3.74	3.56	99.7	94.9	70.0-130			4.93	25
Dichlorodifluoromethane	3.75	3.97	4.01	106	107	64.0-139			1.00	25
1,1,2-Trichlorotrifluoroethane	3.75	4.00	3.83	107	102	70.0-130			4.34	25
,2-Dichlorotetrafluoroethane	3.75	4.03	4.16	107	111	70.0-130			3.17	25
Heptane	3.75	3.06	2.99	81.6	79.7	70.0-130			2.31	25
Hexachloro-1,3-butadiene	3.75	4.00	4.05	107	108	70.0-151			1.24	25
n-Hexane	3.75	3.63	3.62	96.8	96.5	70.0-130			0.276	25
sopropylbenzene	3.75	3.91	3.88	104	103	70.0-130			0.770	25
Methylene Chloride	3.75	3.57	3.52	95.2	93.9	70.0-130			1.41	25
Methyl Butyl Ketone	3.75	4.01	3.92	107	105	70.0-149			2.27	25
Methyl Ethyl Ketone	3.75	3.76	3.82	100	102	70.0-130			1.58	25
4-Methyl-2-pentanone (MIBK)	3.75	3.84	3.74	102	99.7	70.0-139			2.64	25

QUALITY CONTROL SUMMARY

L1468315-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15

Volatile Organic Compounds (MS) by Method TO-15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3767471-1 03/06/22 09:34 • (LCSD) R3767471-2 03/06/22 11:52

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Methyl Methacrylate	3.75	3.76	3.75	100	100	70.0-130			0.266	25
MTBE	3.75	3.71	3.73	98.9	99.5	70.0-130			0.538	25
Naphthalene	3.75	3.32	3.44	88.5	91.7	70.0-159			3.55	25
2-Propanol	3.75	3.56	3.47	94.9	92.5	70.0-139			2.56	25
Propene	3.75	3.41	3.53	90.9	94.1	64.0-144			3.46	25
Styrene	3.75	4.03	3.97	107	106	70.0-130			1.50	25
1,1,2,2-Tetrachloroethane	3.75	3.70	3.68	98.7	98.1	70.0-130			0.542	25
Tetrachloroethylene	3.75	4.18	4.28	111	114	70.0-130			2.36	25
Tetrahydrofuran	3.75	3.59	3.69	95.7	98.4	70.0-137			2.75	25
Toluene	3.75	4.05	4.01	108	107	70.0-130			0.993	25
1,2,4-Trichlorobenzene	3.75	3.22	3.38	85.9	90.1	70.0-160			4.85	25
1,1,1-Trichloroethane	3.75	3.78	3.82	101	102	70.0-130			1.05	25
1,1,2-Trichloroethane	3.75	3.97	3.95	106	105	70.0-130			0.505	25
Trichloroethylene	3.75	4.02	3.99	107	106	70.0-130			0.749	25
1,2,4-Trimethylbenzene	3.75	3.93	3.86	105	103	70.0-130			1.80	25
1,3,5-Trimethylbenzene	3.75	3.95	3.88	105	103	70.0-130			1.79	25
2,2,4-Trimethylpentane	3.75	3.79	3.82	101	102	70.0-130			0.788	25
Vinyl chloride	3.75	3.90	3.68	104	98.1	70.0-130			5.80	25
Vinyl Bromide	3.75	3.93	3.39	105	90.4	70.0-130			14.8	25
Vinyl acetate	3.75	2.83	2.96	75.5	78.9	70.0-130			4.49	25
m&p-Xylene	7.50	7.84	7.69	105	103	70.0-130			1.93	25
o-Xylene	3.75	3.86	3.81	103	102	70.0-130			1.30	25
(S) 1,4-Bromofluorobenzene				90.1	89.9	60.0-140				

WG1828077

QUALITY CONTROL SUMMARY

Organic Compounds (GC) by Method ASTM 1946

L1468315-01,02

Method Blank (MB)

(MB) R3/668/9-3 03	3/06/22 11:20			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Helium	U		0.0259	0.100

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3766879-1 03/0	06/22 11:13 • (LCSE	D) R3766879-	2 03/06/22 11:1	7						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	%	%	%	%	%	%			%	%
Helium	2.50	2.42	2.41	96.8	96.4	70.0-130			0.414	25

[†]Cn

RMD Environmental - Walnut Creek, CA

WG1828193

QUALITY CONTROL SUMMARY

Organic Compounds (GC) by Method ASTM 1946

L1468315-03,04,05,06,07,08,09,10,11,12,13,14,15

Method Blank (MB)

(MB) R3767923-3 03/09/22 11:03

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Helium	U		0.0259	0.100

[']Cp

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3767923-1 03/09/22 10:51 • (LCSD) R3767923-2 03/09/22 10:56

(/		,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	%	%	%	%	%	%			%	%
Helium	2 50	2 50	2 48	100	99.2	70.0-130			0.803	25

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

PAGE:

46 of 50

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40000	Mahasala	NE OC 1E OE
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address:			Billing Informatio	n:		//		Analys	sis	Chain of Custody	Page of		
RMD Environmental - V	Valnut Creek, CA		Accounts Pay							R			
371 Oakland Blvd.			Suite 200							Pac	ce [*]		
Suite 200			Walnut Creek,	CA 94596						MT JULII	ANCING SCIENCE		
oute 200										12065 Lebanon Road Mt J Phone: 615-758-5858 Alt:	uliet, TN 37122 800-767-5859		
eport To: vy Inouye			Email To: linouye@rmdes.ne	Email To: iinouye@rmdes.net;emale@rmdes.net						Submitting a sample via constitutes acknowledg of the Pace Terms and	ment and acceptance Conditions found at:		
Police Credit Union City/State Collected:			Committee of the Commit	FRANCISCO, CA PLEASE CITCLE: PT) MT CT ET						https://info.pacelabs.co standard-terms.pdf	68315		
hone: 025-683-8177	Client Project # 01-DTSC-007		RMDENVPI	HCA-01DTS	01DTSC007					D244			
Ollected by (print): 3. ANGULD E. MALE	Site/Facility ID #		P.O. #					<u>0</u>		Acctnum: RMDENVPHCA Template: T203474			
ollected by (signature):	Rush? (Lab MUST	Be Notified)		Date	Results Needed		Summa	Summa		Prelogin: P90			
Chall	Same Day Next Day	Three Day Five Day						M S S PM			24-122		
200		TAT GRADUA	Coll	ection	Canister P	ressure/Vacuum		TO-1		Shipped Via: F	edEX Ground		
Sample ID	Can #	Flow Cont. #	Date	Time	Initial	Final	I	F		Rem./Contaminant	Sample # (lab only)		
10-127-1	7638	6818	3-4-22	1105	-28.5	-5	X	4			M		
S110-784 +69	2480	11478	3-3-22	1559	-29	-4					100		
310-286	93/10	liFldo	3-3-22	1426	-29	-5					4		
200-2012	9369	11163	3-4-22	1225	-30	-4					u		
310-2913	P1976-7904	11476		1249	-29	-5					705		
SUP-30A	7374	7860		1328	-28	-4					-cl		
SUP-30A-DUP	12407	11487		1328	-29	-5					47		
SUP-30B	10690	20684	V	1359	-29	-4					w.		
SUP-31A	11844	611125	3-2-22	1402	-29	1-4					reg		
SIR-31B	8905	6814		1440	-29	-5	1	V			W		
Remarks:	3 (1)			15+20	empty	5349 7820	1495	/1473	/				
				eturned via: _ FedEx Cour		Tracking #			Hold #				
Relinquished by : (Signature)	Date:		Received	by: (Signature)		Date:	Time:		Conditio	Condition: (lab use only)			
Reimquished by : (Signature)	Date:	00		by: (Signature)		Date:	Time:		COC Sea	Amb al Intact:Y_	N NA		
Relinquished by : (Signature)	Date	Time		for lab by: (Signa		Date: Time: 930			NCF:				

ompany Name/Address: RMD Environmental - Walnut Creek, CA				Billing Information: Accounts Payable					Analy	sis	Chain of Custody	Page of		
1371 Oakland Blvd. Suite 200				1371 Oakland Blvd. Suite 200 Walnut Creek, CA 94596						Pace* PEOPLE ADVANCING SCIENCE MT JULIET, TN 12065 Lebanon Road Mt Juliet, TN 37122				
Report To: Ivy Inouye				Email To: Inouye@rmdes.net;emale@rmdes.net							constitutes acknowled	via this chain of custody dgment and acceptance d Conditions found at:		
Project Police Credit Union Description:			City/State Collected:	AN FRANCISCO, CA PO MT CT ET						standard-terms.pdf				
Phone: 925-683-8177	Client Project # 01-DTSC-00	07		Lab Project # RMDENVP	Lab Project # RMDENVPHCA-01DTSC007						Table #			
Collected by (print): B. AUGULD E. MUE	lected by (print): Site/Facility ID #					P.O.#					Acctnum: RMDENVPHCA Template: T203474			
Collected by (signature):	Rush? (Lab Same Day Next Day	MUST Be No	Day	Date Results Needed					5 Summa		Prelogin: P904064 PM: 942 - Jordan N Zito PB: ((~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
9"-	Two Day	SVALIO	TATCHA	Col	lection	Canister P	ressure/Vacuum	HELIUM	10-1		1000	FedEX Ground		
Sample ID	Can #		Flow Cont. #	Date	Time	Initial	Final				Rem./Contaminant			
SUP-32A	5706		1441	3-3-22	1331	-29	-4	X	4			111		
SUP-32B	21237	1	1471		1403	-28	-5	1				72		
SUP-334	7364		1470		1450	-30	-5	1				1)		
SUP-33A-DUP	6069		11488		1449	-28	-3					74		
SUP-33B	10415		11457	1	1523	-30	-5	A	V			-15		
COC Sig Bottles Correct Suffici	Sample il Present/Intact: ned/Accurate: arrive intact: bottles used: ent volume sent: ceen <0.5 mR/hr:		Thecklist If Appli ICA Zero Heads res.Correct/C	pace: Y N										
Remarks:					eturned via: FedExCour	ier	Tracking #			Hold #				
Redinquished by (Signature)		Date: 3-4-20)	by: (Signature)		Date:	Time:			ondition: (lab use only) AMY			
Relinquished by : (Signature)		Date:	Time:		by: (Signature)		Date: Time:			COC Seal Intact:YNNA				
Relinquished by : (Signature)	1 (1)	Date:	Time:		for lab by: (Signat		Date: 3-5-77	Time:)	NCF:				

R5

03/05-L1468315-NCF RMDENVPHCA

	time spent. on
Members	
Cole Medley (responsible)	ito
Due on 9 March 2022 5:00 PM for target Done	
Login Clarification needed	
Chain of custody is incomplete	
Please specify Metals requested	
Please specify TCLP requested	
Received additional samples not listed on COC	D
Sample IDs on containers do not match IDs on COC	n coc
Client did not "X" analysis	
Chain of Custody is missing	
If no COC: Received by:	
If no COC: Date/Time:	I
If no COC: Temp./Cont.Rec./pH:	1
If no COC: Carrier:	
If no COC: Tracking #:_	
Client informed by call	
Client informed by Email	
Client informed by Voicemail	
Date/Time:	
PM initials:	
Client Contact:	
Comments	
Cole Medley	5 March 2022 4:39 PM
SVP-30A-DUP 03/04/22 1328 (COC) =SVP-28A-DUP 03/04/22 1328 (Container) Logged per COC.	3A-DUP 03/04/22 1328 (Container)
Jordan Zito	7 March 2022 1:11 PM
Correct as written on COC JZ	
Troy Dunlap	7 March 2022 1:27 PM

3/7/2022, 1:27 PM 1 of 1

Pace Analytical® ANALYTICAL REPORT

March 10, 2022

RMD Environmental - Walnut Creek, CA

L1468285 Sample Delivery Group:

Samples Received: 03/05/2022

Project Number: 01-DTSC-007

Description: Police Credit Union

Report To: Ivy Inouye

1371 Oakland Blvd.

Suite 200

Walnut Creek, CA 94596

Entire Report Reviewed By:

Jordan N Zito

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Ds: Detection Summary	6
Sr: Sample Results	8
IAQ-1271-1 L1468285-01	8
IAQ-1271-1-DUP L1468285-02	9
IAQ-1271-2 L1468285-03	10
IAQ-1271-3 L1468285-04	11
OAA-4 L1468285-05	12
IAQ-1281-2 L1468285-06	13
IAQ-1281-1 L1468285-07	14
IAQ-1280-1 L1468285-08	15
IAQ-1280-2 L1468285-09	16
IAQ-1284-1 L1468285-10	17
IAQ-1284-2 L1468285-11	18
OAA-5 L1468285-12	19
IAQ-1276-1 L1468285-13	20
IAQ-1276-2 L1468285-14	21
IAQ-1275-1 L1468285-15	22
IAQ-1275-2 L1468285-16	23
Qc: Quality Control Summary	24
Volatile Organic Compounds (MS) by Method TO-15-SIM	24
GI: Glossary of Terms	29
Al: Accreditations & Locations	30

Sc: Sample Chain of Custody

31

SAMPLE SUMMARY

14.0.4074.4.1.4.400005.044			Collected by EM/BA	Collected date/time 03/04/22 07:49	Received da 03/05/22 09	
IAQ-1271-1 L1468285-01 Air Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118	1	03/06/22 19:19	03/06/22 19:19	CAW	Mt. Juliet, TN
AQ-1271-1-DUP L1468285-02 Air			Collected by EM/BA	Collected date/time 03/04/22 07:49	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118	1	03/06/22 19:57	03/06/22 19:57	CAW	Mt. Juliet, TN
IAQ-1271-2 L1468285-03 Air			Collected by EM/BA	Collected date/time 03/04/22 07:47	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118	1	03/06/22 20:34	03/06/22 20:34	CAW	Mt. Juliet, TN
AQ-1271-3 L1468285-04 Air			Collected by EM/BA	Collected date/time 03/04/22 07:43	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15-SIM /olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118 WG1829622	1	03/06/22 21:12 03/09/22 15:23	03/06/22 21:12 03/09/22 15:23	CAW DAH	Mt. Juliet, TN Mt. Juliet, TN
DAA-4 L1468285-05 Air			Collected by EM/BA	Collected date/time 03/04/22 07:54	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15-SIM /olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118 WG1829622	1	03/06/22 21:50 03/09/22 16:01	03/06/22 21:50 03/09/22 16:01	CAW DAH	Mt. Juliet, TN Mt. Juliet, TN
AQ-1281-2 L1468285-06 Air			Collected by EM/BA	Collected date/time 03/04/22 08:57	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM Volatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118 WG1829622	1 1	03/06/22 22:27 03/09/22 16:39	03/06/22 22:27 03/09/22 16:39	CAW DAH	Mt. Juliet, TN Mt. Juliet, TN
AQ-1281-1 L1468285-07 Air			Collected by EM/BA	Collected date/time 03/04/22 09:02	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15-SIM /olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118 WG1829622	1	03/06/22 23:05 03/09/22 17:17	03/06/22 23:05 03/09/22 17:17	CAW DAH	Mt. Juliet, TN Mt. Juliet, TN
AQ-1280-1 L1468285-08 Air			Collected by EM/BA	Collected date/time 03/04/22 09:35	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118	1	03/06/22 23:43	03/06/22 23:43	CAW	Mt. Juliet, TN

ACCOUNT: RMD Environmental - Walnut Creek, CA

PROJECT: 01-DTSC-007

SDG: L1468285

DATE/TIME: 03/10/22 14:22 PAGE: 3 of 32

SAMPLE SUMMARY

IAQ-1280-2 L1468285-09 Air			Collected by EM/BA	Collected date/time 03/04/22 09:31	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15-SIM /olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828118 WG1829622	1	03/07/22 00:21 03/09/22 18:33	03/07/22 00:21 03/09/22 18:33	CAW DAH	Mt. Juliet, TN Mt. Juliet, TN
AQ-1284-1 L1468285-10 Air			Collected by EM/BA	Collected date/time 03/04/22 09:19	Received da 03/05/22 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828611	1	03/07/22 15:12	03/07/22 15:12	CAW	Mt. Juliet, TN
AQ-1284-2 L1468285-11 Air			Collected by EM/BA	Collected date/time 03/04/22 09:14	Received da 03/05/22 09	
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828611	1	03/07/22 15:49	03/07/22 15:49	CAW	Mt. Juliet, TN
DAA-5 L1468285-12 Air			Collected by EM/BA	Collected date/time 03/04/22 09:23	Received da 03/05/22 09	
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828611	1	03/07/22 16:27	03/07/22 16:27	CAW	Mt. Juliet, TN
AQ-1276-1 L1468285-13 Air			Collected by EM/BA	Collected date/time 03/04/22 09:53	Received da 03/05/22 09	
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828611	1	03/07/22 17:05	03/07/22 17:05	CAW	Mt. Juliet, TN
AQ-1276-2 L1468285-14 Air			Collected by EM/BA	Collected date/time 03/04/22 09:51	Received da 03/05/22 09	
fethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828611	1	03/07/22 17:43	03/07/22 17:43	CAW	Mt. Juliet, TN
AQ-1275-1 L1468285-15 Air			Collected by EM/BA	Collected date/time 03/04/22 11:28	Received da 03/05/22 09	
flethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
olatile Organic Compounds (MS) by Method TO-15-SIM	WG1828611	1	03/07/22 18:21	03/07/22 18:21	CAW	Mt. Juliet, TN
AQ-1275-2 L1468285-16 Air			Collected by EM/BA	Collected date/time 03/04/22 11:26	Received da 03/05/22 09	
<i>l</i> lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Asiatis Occasio Communication (MC) is Maria LTO 45 CIM	11101000011		00/07/00 40 00	00/07/00 40 00	0.1111	

Volatile Organic Compounds (MS) by Method TO-15-SIM

WG1828611

03/07/22 19:00

CAW

Mt. Juliet, TN

03/07/22 19:00

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOQ) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jordan N Zito

Project Manager

Volatile Organic Compounds (MS) by Method TO-15-SIM

The same analyte is found in the associated blank.

Batch	Analyte	Lab Sample ID
WG1828611	Benzene	L1468285-10, 11, 12, 13, 14
WG1829622	1,4-Dichlorobenzene	L1468285-04, 05, 06, 08, 09

The associated batch QC was above the established quality control range for accuracy.

Batch	Lab Sample ID	Analytes
WG1828118	(LCS) R3767350-1, (LCSD) R3767350-2, L1468285-01, 02, 03	1,4-Dichlorobenzene
WG1828611	(LCS) R3767358-1, (LCSD) R3767358-2, L1468285-10, 11, 12, 13, 14, 15, 16	1,4-Dichlorobenzene

DETECTION SUMMARY

			CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
AQ-1271-1	L1468285-01	Benzene	71-43-2	78.10	0.0200	0.0639	0.163	0.521		1	WG1828118
AQ-1271-1	L1468285-01	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0892	0.562		1	WG1828118
AQ-1271-1	L1468285-01	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.712	1.47		1	WG1828118
AQ-1271-1	L1468285-01	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	2.00	8.10		1	WG1828118
AQ-1271-1	L1468285-01	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0469	0.203		1	WG1828118
AQ-1271-1	L1468285-01	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0259	0.176		1	WG1828118
AQ-1271-1-DUP	L1468285-02	Benzene	71-43-2	78.10	0.0200	0.0639	0.118	0.377		1	WG1828118
AQ-1271-1-DUP	L1468285-02	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0934	0.588		1	WG182811
AQ-1271-1-DUP	L1468285-02	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.719	1.49		1	WG182811
AQ-1271-1-DUP	L1468285-02	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	1.90	7.69		1	WG182811
AQ-1271-1-DUP	L1468285-02	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0423	0.183		1	WG182811
AQ-1271-1-DUP	L1468285-02	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0244	0.166		1	WG1828118
AQ-1271-2	L1468285-03	Benzene	71-43-2	78.10	0.0200	0.0639	0.119	0.380		1	WG182811
AQ-1271-2	L1468285-03	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0887	0.559		1	WG1828118
AQ-1271-2	L1468285-03	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.718	1.48		1	WG182811
AQ-1271-2	L1468285-03	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.302	1.22		1	WG182811
AQ-1271-2	L1468285-03	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0455	0.197		1	WG182811
AQ-1271-2	L1468285-03	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0326	0.221		1	WG182811
AQ-1271-3	L1468285-04	Benzene	71-43-2	78.10	0.0200	0.0639	0.163	0.521		1	WG182811
AQ-1271-3	L1468285-04	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0889	0.560		1	WG182811
AQ-1271-3	L1468285-04	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.796	1.64		1	WG182811
AQ-1271-3	L1468285-04	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0861	0.518	<u>B</u>	1	WG18296
Q-1271-3	L1468285-04	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.265	1.07		1	WG182811
Q-1271-3	L1468285-04	Ethylbenzene	100-41-4	106	0.0300	0.130	0.114	0.494		1	WG182811
AQ-1271-3	L1468285-04	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0265	0.180		1	WG182811
)AA-4	L1468285-05	Benzene	71-43-2	78.10	0.0200	0.0639	0.0967	0.309		1	WG182811
)AA-4	L1468285-05	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0852	0.537		1	WG182811
)AA-4	L1468285-05	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.612	1.26		1	WG182811
)AA-4	L1468285-05	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0590	0.355	<u>B</u>	1	WG18296
AQ-1281-2	L1468285-06	Benzene	71-43-2	78.10	0.0200	0.0639	0.159	0.508		1	WG182811
AQ-1281-2	L1468285-06	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.100	0.630		1	WG182811
AQ-1281-2	L1468285-06	Chloromethane	74-87-3	50.50	0.0300	0.0620	1.03	2.13		1	WG182811
AQ-1281-2	L1468285-06	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0459	0.276	<u>B</u>	1	WG18296
AQ-1281-2	L1468285-06	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0812	0.352		1	WG182811
AQ-1281-2	L1468285-06	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0477	0.324		1	WG182811
AQ-1281-2	L1468285-06	Trichloroethylene	79-01-6	131	0.0200	0.107	1.02	5.47		1	WG182811
AQ-1281-1	L1468285-07	Benzene	71-43-2	78.10	0.0200	0.0639	0.227	0.725		1	WG182811
AQ-1281-1	L1468285-07	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0903	0.569		1	WG182811
AQ-1281-1	L1468285-07	Chloromethane	74-87-3	50.50	0.0300	0.0620	1.21	2.50		1	WG182811
AQ-1281-1	L1468285-07	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.101	0.607		1	WG18296
AQ-1281-1	L1468285-07	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0747	0.324		1	WG182811
AQ-1281-1	L1468285-07	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.181	1.23		1	WG182811
AQ-1281-1	L1468285-07	1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	0.290	1.58		1	WG182811
AQ-1280-1	L1468285-08	Benzene	71-43-2	78.10	0.0200	0.0639	0.598	1.91		1	WG182811
AQ-1280-1	L1468285-08	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0941	0.593		1	WG182811
AQ-1280-1	L1468285-08	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.811	1.68		1	WG182811
AQ-1280-1	L1468285-08	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0274	0.165	В	1	WG18296
AQ-1280-1	L1468285-08	Ethylbenzene	100-41-4	106	0.0300	0.130	0.202	0.876		1	WG182811
AQ-1280-1	L1468285-08	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0598	0.406		1	WG182811
AQ-1280-2	L1468285-09	Benzene	71-43-2	78.10	0.0200	0.0639	0.513	1.64		1	WG18281
AQ-1280-2	L1468285-09	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0917	0.578		1	WG18281
AQ-1280-2	L1468285-09	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.926	1.91		1	WG182811
AQ-1280-2	L1468285-09	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0453	0.272	В	1	WG18296
AQ-1280-2	L1468285-09	Ethylbenzene	100-41-4	106	0.0300	0.130	0.185	0.802	-	1	WG182811
AQ-1280-2	L1468285-09	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0509	0.346		1	WG182811

DETECTION SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

			CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
IAQ-1284-1	L1468285-10	Benzene	71-43-2	78.10	0.0200	0.0639	0.125	0.399	В	1	WG1828611
IAQ-1284-1	L1468285-10	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0947	0.596	_	1	WG1828611
IAQ-1284-1	L1468285-10	Chloroform	67-66-3	119	0.0200	0.0973	0.337	1.64		1	WG1828611
IAQ-1284-1	L1468285-10	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.783	1.62		1	WG1828611
IAQ-1284-1	L1468285-10	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0262	0.158	<u>J4</u>	1	WG1828611
IAQ-1284-1	L1468285-10	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.128	0.518	_	1	WG1828611
IAQ-1284-1	L1468285-10	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0981	0.425		1	WG1828611
AQ-1284-1	L1468285-10	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.144	0.978		1	WG1828611
IAQ-1284-1	L1468285-10	1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	0.0227	0.123		1	WG1828611
AQ-1284-2	L1468285-11	Benzene	71-43-2	78.10	0.0200	0.0639	0.118	0.377	В	1	WG1828611
IAQ-1284-2	L1468285-11	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0892	0.562	_	1	WG1828611
IAQ-1284-2	L1468285-11	Chloroform	67-66-3	119	0.0200	0.0973	0.114	0.555		1	WG1828611
AQ-1284-2	L1468285-11	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.720	1.49		1	WG1828611
AQ-1284-2	L1468285-11	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0784	0.317		1	WG1828611
AQ-1284-2	L1468285-11	Ethylbenzene	100-41-4	106	0.0300	0.130	0.116	0.503		1	WG1828611
AQ-1284-2	L1468285-11	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0766	0.520		1	WG1828611
OAA-5	L1468285-12	Benzene	71-43-2	78.10	0.0200	0.0639	0.125	0.399	<u>B</u>	1	WG1828611
DAA-5	L1468285-12	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0867	0.546	<u>=</u>	1	WG1828611
DAA-5	L1468285-12	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.633	1.31		1	WG1828611
DAA-5 DAA-5	L1468285-12	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.035	0.519		1	WG1828611
AQ-1276-1	L1468285-13	Benzene	71-43-2	78.10	0.0200	0.0639	0.0704	0.415	D	1	WG1828611
AQ-1276-1 AQ-1276-1	L1468285-13	Carbon tetrachloride	56-23-5	154	0.0200	0.0039	0.130	0.901	<u>B</u>	1	WG1828611
AQ-1276-1 AQ-1276-1	L1468285-13	Chloroform	67-66-3	119	0.0200	0.0973	1.16	5.65		1	WG1828611
			74-87-3	50.50	0.0200		0.955	1.97		1	
AQ-1276-1	L1468285-13	Chloromethane		99	0.0300	0.0620 0.0810		0.325		1	WG1828611
AQ-1276-1	L1468285-13	1,2-Dichloroethane	107-06-2				0.0802				WG1828611
AQ-1276-1	L1468285-13	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0363	0.157		1	WG1828611
AQ-1276-1	L1468285-13	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.281	1.91		1	WG1828611
AQ-1276-2	L1468285-14	Benzene	71-43-2	78.10	0.0200	0.0639	0.141	0.450	<u>B</u>	1	WG1828611
AQ-1276-2	L1468285-14	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.117	0.737		1	WG1828611
AQ-1276-2	L1468285-14	Chloroform	67-66-3	119	0.0200	0.0973	0.698	3.40		1	WG1828611
AQ-1276-2	L1468285-14	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.931	1.92		1	WG1828611
AQ-1276-2	L1468285-14	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0656	0.266		1	WG1828611
AQ-1276-2	L1468285-14	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0601	0.261		1	WG1828611
AQ-1276-2	L1468285-14	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0242	0.164		1	WG1828611
AQ-1275-1	L1468285-15	Benzene	71-43-2	78.10	0.0200	0.0639	0.333	1.06		1	WG1828611
AQ-1275-1	L1468285-15	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0923	0.581		1	WG1828611
AQ-1275-1	L1468285-15	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.721	1.49		1	WG1828611
AQ-1275-1	L1468285-15	Ethylbenzene	100-41-4	106	0.0300	0.130	0.166	0.720		1	WG1828611
AQ-1275-1	L1468285-15	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.296	2.01		1	WG1828611
AQ-1275-2	L1468285-16	Benzene	71-43-2	78.10	0.0200	0.0639	0.365	1.17		1	WG1828611
AQ-1275-2	L1468285-16	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0920	0.579		1	WG1828611
AQ-1275-2	L1468285-16	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.871	1.80		1	WG1828611
AQ-1275-2	L1468285-16	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0527	0.213		1	WG1828611
AQ-1275-2	L1468285-16	Ethylbenzene	100-41-4	106	0.0300	0.130	0.170	0.737		1	WG1828611

L1468285-16

Tetrachloroethylene

IAQ-1275-2

127-18-4

166

0.0200

0.136

0.176

1.19

WG1828611

Collected date/time: 03/04/22 07:49

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.163	0.521		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0892	0.562		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.712	1.47		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828118
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	2.00	8.10		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0469	0.203		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0259	0.176		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		110				WG1828118

Collected date/time: 03/04/22 07:49

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 02

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.118	0.377		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0934	0.588		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.719	1.49		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828118
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	1.90	7.69		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0423	0.183		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0244	0.166		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118

109

60.0-140

175

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 03

Collected date/time: 03/04/22 07:47

60.0-140

175

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.119	0.380		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0887	0.559		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.718	1.48		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	J4	1	WG1828118
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.302	1.22		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0455	0.197		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0326	0.221		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118

107

Collected date/time: 03/04/22 07:43

(S) 1,4-Bromofluorobenzene 460-00-4

Volatile Organic Compounds (MS) by Method TO-15-SIM

175

60.0-140

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.163	0.521		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0889	0.560		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.796	1.64		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0861	0.518	B	1	WG1829622
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.265	1.07		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.114	0.494		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0265	0.180		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		107				WG1828118

110

Collected date/time: 03/04/22 07:54

(S) 1,4-Bromofluorobenzene 460-00-4

1468285

Volatile Organic Compounds (MS) by Method TO-15-SIM

175

60.0-140

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.0967	0.309		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0852	0.537		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.612	1.26		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0590	0.355	В	1	WG1829622
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	ND	ND		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	ND	ND		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		100				WG1828118

105

Collected date/time: 03/04/22 08:57

(S) 1,4-Bromofluorobenzene 460-00-4

Volatile Organic Compounds (MS) by Method TO-15-SIM

175

60.0-140

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.159	0.508		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.100	0.630		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	1.03	2.13		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0459	0.276	В	1	WG1829622
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0812	0.352		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0477	0.324		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	1.02	5.47		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		105				WG1828118

108

Collected date/time: 03/04/22 09:02

(S) 1,4-Bromofluorobenzene 460-00-4

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 07

Volatile Organic Compounds (MS) by Method TO-15-SIM

175

175

60.0-140

60.0-140

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.227	0.725		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0903	0.569		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	1.21	2.50		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.101	0.607		1	WG1829622
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0747	0.324		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.181	1.23		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	0.290	1.58		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118

103

106

WG1828118

Collected date/time: 03/04/22 09:35

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 08

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.598	1.91		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0941	0.593		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.811	1.68		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0274	0.165	В	1	WG1829622
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.202	0.876		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0598	0.406		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		103				WG1828118

109

60.0-140

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 09

Collected date/time: 03/04/22 09:31

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.513	1.64		1	WG1828118
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0917	0.578		1	WG1828118
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828118
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828118
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.926	1.91		1	WG1828118
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828118
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0453	0.272	В	1	WG1829622
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828118
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG1828118
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828118
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828118
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828118
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828118
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828118
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828118
Ethylbenzene	100-41-4	106	0.0300	0.130	0.185	0.802		1	WG1828118
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828118
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0509	0.346		1	WG1828118
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828118
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828118
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828118
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828118
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828118
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		109				WG1828118

112

60.0-140

Collected date/time: 03/04/22 09:19

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 10

L1468285

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.125	0.399	<u>B</u>	1	WG1828611
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0947	0.596		1	WG1828611
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828611
Chloroform	67-66-3	119	0.0200	0.0973	0.337	1.64		1	WG1828611
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.783	1.62		1	WG1828611
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828611
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0262	0.158	<u>J4</u>	1	WG1828611
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828611
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.128	0.518		1	WG1828611
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828611
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828611
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828611
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828611
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828611
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828611
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0981	0.425		1	WG1828611
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828611
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.144	0.978		1	WG1828611
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	0.0227	0.123		1	WG1828611
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828611
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828611
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828611
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828611

109

60.0-140

175

Collected date/time: 03/04/22 09:14

(S) 1,4-Bromofluorobenzene 460-00-4

1468285

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.118	0.377	В	1	WG1828611
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0892	0.562		1	WG1828611
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828611
Chloroform	67-66-3	119	0.0200	0.0973	0.114	0.555		1	WG1828611
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.720	1.49		1	WG1828611
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828611
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828611
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828611
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0784	0.317		1	WG1828611
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828611
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828611
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828611
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828611
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828611
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828611
Ethylbenzene	100-41-4	106	0.0300	0.130	0.116	0.503		1	WG1828611
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828611
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0766	0.520		1	WG1828611
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828611
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828611
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828611
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828611
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828611

106

60.0-140

175

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 12

Collected date/time: 03/04/22 09:23

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.125	0.399	<u>B</u>	1	WG1828611
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0867	0.546		1	WG1828611
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828611
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828611
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.633	1.31		1	WG1828611
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828611
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828611
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828611
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG1828611
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828611
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828611
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828611
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828611
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828611
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828611
Ethylbenzene	100-41-4	106	0.0300	0.130	ND	ND		1	WG1828611
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828611
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0764	0.519		1	WG1828611
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828611
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828611
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828611
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828611
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828611

101

60.0-140

175

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 13

Collected date/time: 03/04/22 09:53

60.0-140

175

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.130	0.415	В	1	WG1828611
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.143	0.901		1	WG1828611
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828611
Chloroform	67-66-3	119	0.0200	0.0973	1.16	5.65		1	WG1828611
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.955	1.97		1	WG1828611
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828611
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828611
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828611
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0802	0.325		1	WG1828611
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828611
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828611
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828611
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828611
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828611
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828611
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0363	0.157		1	WG1828611
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828611
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.281	1.91		1	WG1828611
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828611
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828611
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828611
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828611
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828611

101

Collected date/time: 03/04/22 09:51

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 14

L1468285

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.141	0.450	<u>B</u>	1	WG1828611
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.117	0.737		1	WG1828611
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828611
Chloroform	67-66-3	119	0.0200	0.0973	0.698	3.40		1	WG1828611
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.931	1.92		1	WG1828611
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828611
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828611
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828611
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0656	0.266		1	WG1828611
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828611
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828611
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828611
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828611
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828611
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828611
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0601	0.261		1	WG1828611
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828611
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0242	0.164		1	WG1828611
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828611
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828611
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828611
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828611
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828611

104

60.0-140

175

1,1,1-Trichloroethane

1,1,2-Trichloroethane

(S) 1,4-Bromofluorobenzene

Trichloroethylene

Vinyl chloride

Vinyl acetate

SAMPLE RESULTS - 15

Collected date/time: 03/04/22 11:28 L1468285

Volatile Organic Compounds (MS) by Method TO-15-SIM

71-55-6

79-00-5

79-01-6

75-01-4

108-05-4

460-00-4

133

133

131

62.50

86.10

175

0.0200

0.0300

0.0200

0.0200

0.0200

60.0-140

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.333	1.06		1	WG1828611
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0923	0.581		1	WG1828611
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828611
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828611
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.721	1.49		1	WG1828611
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828611
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828611
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828611
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG1828611
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828611
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828611
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828611
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828611
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828611
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828611
Ethylbenzene	100-41-4	106	0.0300	0.130	0.166	0.720		1	WG1828611
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828611
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.296	2.01		1	WG1828611

ND

ND

ND

ND

ND

103

0.109

0.163

0.107

0.0511

0.0704

ND

ND

ND

ND

ND

WG1828611

WG1828611

WG1828611

WG1828611

WG1828611

WG1828611

1

1

1

1

Collected date/time: 03/04/22 11:26

(S) 1,4-Bromofluorobenzene 460-00-4

175

60.0-140

SAMPLE RESULTS - 16

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAC #	Mal Mr	DDI 4	DDLO	Darrella	Darrella	0	Dilentin	Datab
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.365	1.17		1	WG1828611
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0920	0.579		1	WG1828611
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG1828611
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG1828611
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.871	1.80		1	WG1828611
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG1828611
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND	<u>J4</u>	1	WG1828611
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG1828611
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0527	0.213		1	WG1828611
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG1828611
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG1828611
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG1828611
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG1828611
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG1828611
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG1828611
Ethylbenzene	100-41-4	106	0.0300	0.130	0.170	0.737		1	WG1828611
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG1828611
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.176	1.19		1	WG1828611
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG1828611
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG1828611
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG1828611
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG1828611
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG1828611

105

WG1828118

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1468285-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3767350-3 03/06/2	22 10:38				- '
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ppbv		ppbv	ppbv	2.
Benzene	U		0.0112	0.0200	Ŀ
Carbon tetrachloride	U		0.00995	0.0200	3
Chloroethane	U		0.00944	0.0400	L
Chloroform	U		0.00729	0.0200	4
Chloromethane	U		0.0162	0.0300	4
1,2-Dibromoethane	U		0.00779	0.0200	L
1,4-Dichlorobenzene	U		0.00691	0.0200	5
1,1-Dichloroethane	U		0.00893	0.0200	L
1,2-Dichloroethane	U		0.000471	0.0200	6
1,1-Dichloroethene	U		0.00921	0.0200	6
cis-1,2-Dichloroethene	U		0.0142	0.0200	_
trans-1,2-Dichloroethene	U		0.00499	0.0200	7
1,2-Dichloropropane	U		0.00885	0.0300	
cis-1,3-Dichloropropene	U		0.00735	0.0200	8
trans-1,3-Dichloropropene	U		0.00711	0.0300	8
Ethylbenzene	U		0.0126	0.0300	L
1,1,2,2-Tetrachloroethane	U		0.00874	0.0200	9
Tetrachloroethylene	U		0.0127	0.0200	L
1,1,1-Trichloroethane	U		0.00649	0.0200	10
1,1,2-Trichloroethane	U		0.00583	0.0300	10
Trichloroethylene	U		0.00746	0.0200	L
Vinyl chloride	U		0.00765	0.0200	
Vinyl acetate	U		0.0111	0.0200	
(S) 1,4-Bromofluorobenzene	94.1			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(200) 1107 07000 1 0070	0/22 03.21 (200	D) 1107 07 000	2 00/00/22 10	.00							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
enzene	0.500	0.567	0.563	113	113	70.0-130			0.708	25	
on tetrachloride	0.500	0.591	0.589	118	118	70.0-130			0.339	25	
proethane	0.500	0.535	0.628	107	126	70.0-130			16.0	25	
roform	0.500	0.579	0.574	116	115	70.0-130			0.867	25	
romethane	0.500	0.565	0.565	113	113	70.0-130			0.000	25	
Dibromoethane	0.500	0.585	0.580	117	116	70.0-130			0.858	25	
ichlorobenzene	0.500	0.681	0.681	136	136	70.0-130	<u>J4</u>	<u>J4</u>	0.000	25	
Dichloroethane	0.500	0.576	0.571	115	114	70.0-130			0.872	25	
-Dichloroethane	0.500	0.598	0.589	120	118	70.0-130			1.52	25	

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1468285-01,02,03,04,05,06,07,08,09

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3767350-1 03/06/22 09:21 • (LCSD) R3767350-2 03/06/22 10:00

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,1-Dichloroethene	0.500	0.585	0.580	117	116	70.0-130			0.858	25
cis-1,2-Dichloroethene	0.500	0.532	0.525	106	105	70.0-130			1.32	25
trans-1,2-Dichloroethene	0.500	0.568	0.560	114	112	70.0-130			1.42	25
1,2-Dichloropropane	0.500	0.584	0.579	117	116	70.0-130			0.860	25
cis-1,3-Dichloropropene	0.500	0.579	0.572	116	114	70.0-130			1.22	25
trans-1,3-Dichloropropene	0.500	0.565	0.560	113	112	70.0-130			0.889	25
Ethylbenzene	0.500	0.579	0.590	116	118	70.0-130			1.88	25
1,1,2,2-Tetrachloroethane	0.500	0.578	0.579	116	116	70.0-130			0.173	25
Tetrachloroethylene	0.500	0.605	0.605	121	121	70.0-130			0.000	25
1,1,1-Trichloroethane	0.500	0.583	0.583	117	117	70.0-130			0.000	25
1,1,2-Trichloroethane	0.500	0.592	0.590	118	118	70.0-130			0.338	25
Trichloroethylene	0.500	0.597	0.593	119	119	70.0-130			0.672	25
Vinyl chloride	0.500	0.575	0.572	115	114	70.0-130			0.523	25
Vinyl acetate	0.500	0.551	0.548	110	110	70.0-130			0.546	25
(S) 1,4-Bromofluorobenzene				98.6	100	60.0-140				

WG1828611

QUALITY CONTROL SUMMARY

L1468285-10,11,12,13,14,15,16

Method Blank (MB)

(S) 1,4-Bromofluorobenzene 95.4

Volatile Organic Compounds (MS) by Method TO-15-SIM

(MB) R3767358-3 03/07/22 11:02 MB RDL MB Result MB Qualifier MB MDL Analyte ppbv ppbv ppbv Benzene 0.0145 0.0112 0.0200 0.00995 0.0200 Carbon tetrachloride Ss Chloroethane U 0.00944 0.0400 U 0.00729 0.0200 Chloroform [†]Cn U 0.0162 0.0300 Chloromethane U 0.00779 0.0200 1,2-Dibromoethane U 0.00691 0.0200 1,4-Dichlorobenzene 1,1-Dichloroethane U 0.00893 0.0200 1,2-Dichloroethane U 0.000471 0.0200 Sr U 1,1-Dichloroethene 0.00921 0.0200 0.0142 0.0200 cis-1,2-Dichloroethene U U 0.00499 trans-1,2-Dichloroethene 0.0200 1,2-Dichloropropane U 0.00885 0.0300 U 0.00735 cis-1,3-Dichloropropene 0.0200 trans-1,3-Dichloropropene U 0.00711 0.0300 Ethylbenzene U 0.0126 0.0300 U 0.00874 0.0200 1,1,2,2-Tetrachloroethane Tetrachloroethylene 0.0127 0.0200 0.00649 0.0200 1,1,1-Trichloroethane U Sc 1,1,2-Trichloroethane 0.00583 0.0300 U 0.00746 0.0200 Trichloroethylene Vinyl chloride U 0.00765 0.0200 Vinyl acetate U 0.0111 0.0200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

60.0-140

(LCS) R3767358-1 03/07/22 09:44 • (LCSD) R3767358-2 03/07/22 10:24

(200) 10707000 1 007	07722 03.11 (200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 00/0//22 10	1						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Benzene	0.500	0.554	0.570	111	114	70.0-130			2.85	25
Carbon tetrachloride	0.500	0.594	0.602	119	120	70.0-130			1.34	25
Chloroethane	0.500	0.589	0.546	118	109	70.0-130			7.58	25
Chloroform	0.500	0.581	0.581	116	116	70.0-130			0.000	25
Chloromethane	0.500	0.568	0.585	114	117	70.0-130			2.95	25
1,2-Dibromoethane	0.500	0.574	0.580	115	116	70.0-130			1.04	25
1,4-Dichlorobenzene	0.500	0.668	0.667	134	133	70.0-130	<u>J4</u>	<u>J4</u>	0.150	25
1,1-Dichloroethane	0.500	0.578	0.585	116	117	70.0-130			1.20	25
1,2-Dichloroethane	0.500	0.579	0.598	116	120	70.0-130			3.23	25

03/10/22 14:22

Ds

Qc

Ğl

ΆΙ

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1468285-10,11,12,13,14,15,16

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3767358-1 03/07/22 09:44 • (LCSD) R3767358-2 03/07/22 10:24

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,1-Dichloroethene	0.500	0.595	0.603	119	121	70.0-130			1.34	25
cis-1,2-Dichloroethene	0.500	0.536	0.550	107	110	70.0-130			2.58	25
trans-1,2-Dichloroethene	0.500	0.570	0.580	114	116	70.0-130			1.74	25
1,2-Dichloropropane	0.500	0.570	0.574	114	115	70.0-130			0.699	25
cis-1,3-Dichloropropene	0.500	0.575	0.584	115	117	70.0-130			1.55	25
trans-1,3-Dichloropropene	0.500	0.566	0.563	113	113	70.0-130			0.531	25
Ethylbenzene	0.500	0.599	0.603	120	121	70.0-130			0.666	25
1,1,2,2-Tetrachloroethane	0.500	0.567	0.580	113	116	70.0-130			2.27	25
Tetrachloroethylene	0.500	0.592	0.602	118	120	70.0-130			1.68	25
1,1,1-Trichloroethane	0.500	0.591	0.591	118	118	70.0-130			0.000	25
1,1,2-Trichloroethane	0.500	0.575	0.577	115	115	70.0-130			0.347	25
Trichloroethylene	0.500	0.582	0.592	116	118	70.0-130			1.70	25
Vinyl chloride	0.500	0.582	0.588	116	118	70.0-130			1.03	25
Vinyl acetate	0.500	0.577	0.576	115	115	70.0-130			0.173	25
(S) 1,4-Bromofluorobenzene				102	102	60.0-140				

WG1829622

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1468285-04,05,06,07,08,09

Method Blank (MB)

(MB) R3768319-3 03/09/2	2 10:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ppbv		ppbv	ppbv
1,4-Dichlorobenzene	0.00885	<u>J</u>	0.00691	0.0200
(S) 1,4-Bromofluorobenzene	98.7			60.0-140

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3768319-1	03/09/22	09:28 •	(LCSD) R3	3768319-2	03/09/22 10:07

(200) 1107 00010 1 007 007	000 (_00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 00/00/22 .0	,						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,4-Dichlorobenzene	0.500	0.482	0.482	96.4	96.4	70.0-130			0.000	25
(S) 14-Bromofluorobenzene				105	10.3	60 0-140				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

, 10 0 1 0 1 1 d 1 1 0 d 1 1 0	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Callalitier	Description

<u> </u>	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address: RMD Environmental - '	Walnut Cree	k CA		100	Accounts Pay			1000		Analys	Chain of C	Custody	Page of of						
		n, on			1371 Oakland							Ba	20'						
1371 Oakland Blvd.					Suite 200 Walnut Creek,	CA 94596						Tal	VANCING SCIENCE						
Suite 200					Trainet Orces,	OA 34330	1411,74					MT JULI	ET, TN						
Report To:					Email To: linouye@rmdes.ne	t;emale@rmdes.net					Phone: 615- Submitting	758-5858 Alt g a sample vi	Juliet, TN 37122 800-767-5859 a this chain of custody ment and acceptance						
Project Police Credit Union			City/Sta		IN FOA	50810U	S CA	Please Circle:			of the Pace	Terms and o.pacelabs.co	Conditions found at: m/hubfs/pas-						
Client Project #			OR	Lab Project #	NOVOC(),4	COMIT CI EI			eng #	14	68582							
Phone: 925-683-8177	01-DTSC-0	07			RMDENVPHCA-01DTSC007						D	243							
Collected by (print): E. Male B. Angulo	Site/Facility ID #				P.O.#						Acctnun		MDENVERC						
Collected by (signature):	Rush? (La Same Da Next Day		Day			Date I	Results Needed	Template: T204372 Prelogin: P908183 PM: 942 - Jordan N Zito PB: CSCOLAS h. Shipped Via: FedEX Groun					8183						
0	Two Day		TAT		Colle	ection	Canister Pre	ssure/Vacuum)-15			PB: Cololhish							
Sample ID	Can #		Flow Con	t.#.	3-4Pate 22	G Time	Initial	Final	1		Shipped Rem./Con		edEX Ground Sample # (lab only)						
IAQ-1271-1	10836)	11387		3-3-22	-030 0 00-	3-4-22-2	9 -6	X		To be a second	15	-01						
1AQ-1271-DUP	20364		9935		3-4-22	0749	-29.5	-4	1		Fred States	un de la companya de	w						
140-1271-2	110810)	12022		12022		3-4-22	747	-29	-5					N				
1AQ-1271-3					A	10033		10033		10033		3-4-22	0743	-29	-6				
PAAC	11262		01003	4	34-22	0754	-28	40					16						
1AQ-1281-2	9137		10064		3-4-22	08576	3527	-3.5					24						
1A10-1281-1	8037		5289		3-4-22	0902	-30	-7				357	w						
IAG-1280-1	730-		9700		3-4-22	0935	-30	-7				146	-08						
VAG-1280-2	6944		10021	0	3-4-22	0931	-28	74					74						
1AQ-1284-1	7984		11412	-	3-4-22	0919	-30	-6	V				70						
Remarks:					Samples ret	turned via: FedEx _ Courle			1521	(lesel)/e	Hold#								
Relinquished by : (Signature)		Date: 3-4-2	2 1	me: 500	THE PROPERTY IN	y: (Signature)		Tracking # 5349 787	7 <u>0 5140</u> Time:	רוכישובוו	Condition:	(lab u	se only)						
Relinquished by : (Signature) Date:		Date:	Time:			y: (Signature)		Date:	Time:		COC Seal Intact:	Y	N NA						
Relinquished by : (Signature)		Date:	TI	me:	Received for	or lab by: (Signatu	re)	3-5-27.	Time:		NCF:								

Company Name/Address: RMD Environmental - V	Valnut Creek, CA		1	illing Informatio Accounts Paya 1371 Oakland	able				Analysis		Chain of Custody	Page of	
1371 Oakland Blvd. Suite 200				Suite 200 Walnut Creek, CA 94596								ANCING SCIENCE	
Suite 200											MT JULII	ulict, TN 37122	
Report To: Ivy Inouye				Email To: ilnouye@rmdes.net;emale@rmdes.net							Phone: 615-758-5858 Alt: 800-767-5859 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace Terms and Conditions found at: https://info.pacelabs.com/hub/s/passtandard-terms.pdf		
Project Police Credit Union Description:		City/St Collect	ate SA	TRANCISCO CA Please Circle: PT MT CT ET									
Phone: 925-683-8177	O1-DTSC-007			ab Project # RMDENVPI	HCA-01DTSC	007				SDG # (7 9 %) Table #			
Collected by (print): Site/Facility ID #				.0.#				Summa				IDENVPHCA 04372	
Collected by (signature):	Next Day X	Three Day			Date R	esults Needed					Prelogin: P908183 PM: 942-Jordan N.Zito PB: 4-04/3/2		
7	Two Day	STD TAT		Coll	ection	Canister Pr	ressure/Vacuum	T0-1			Shipped Via: F	edEX Ground	
Sample ID	Can #	Flow Cor		Date	Time	Initial	Final				Rem./Contaminant	Sample # (lab only)	
1AQ-1284-2	10409	11396) (34-22	0914	-28	0	X			1	-n	
HAQ-120 OOA-50AA	5 10795	12023		34-22	0923	-29	-3					77	
1AQ 1270-11AQ-1276	5111192	5699			0953	-30	-7			77	4	-03	
1A0-1276-2	8022	7821			0951	-30	-6		Trans.		nn de la	74	
1AQ-1275-1	11132	10013	7.		1128	-17.5	-4					-15	
1AQ-1275-2	10823	5275)	V	1126	-30	-7	-				74	
	Sample Receipt	. Checklist	clicable						-0.5				
and Signed A	sent/Intact: Y N	VOA Zero He Pres.Correc											
Bottles arri Correct bott Sufficient V	les used: Y/ N												
Remarks:	0.5 mR/hr: 1 N	1 100	-2	7									
					eturned via: _FedExCourie	er	Tracking #			Hold#			
Relinquished by): (Signature) Date: Time: 3-4-22 158		ime: 1500	Received by: (Signature)			Date: Time:			Condition: (lab use only)				
Relinquished by : (Signature)	Date:	7	îme:	Received by: (Signature) Date:			Date:	Date: Time:			COC Seal Intact: Y N		
Relinquished by : (Signature)	Date:		Time:	Received	for lab by: (Signatu	ire)	Date:	Time:	30	NCF:			

Pace Analytical® ANALYTICAL REPORT

February 09, 2023

RMD Environmental - Walnut Creek, CA

Sample Delivery Group: L1582381

Samples Received: 02/04/2023

Project Number: 01-DTSC-007

Description: Police Credit Union

Report To: Ivy Inouye

1371 Oakland Blvd.

Suite 200

Walnut Creek, CA 94596

Entire Report Reviewed By: Junifer McCurdy

Jennifer A McCurdy

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Ds: Detection Summary	6
Sr: Sample Results	9
SVP-33A L1582381-01	9
SVP-33A-DUP L1582381-02	11
SVP-33B L1582381-03	13
SVP-32A L1582381-04	15
SVP-32B L1582381-05	17
SVP-31A L1582381-06	19
SVP-30A L1582381-07	21
SVP-30A-DUP L1582381-08	23
SVP-30B L1582381-09	25
SVP-29A L1582381-10	27
SVP-29B L1582381-11	29
SVP-28A L1582381-12	31
SVP-28B L1582381-13	33
VP-1271-1 L1582381-14	35
Qc: Quality Control Summary	37
Volatile Organic Compounds (MS) by Method TO-15	37
Organic Compounds (GC) by Method ASTM 1946	41
GI: Glossary of Terms	42
Al: Accreditations & Locations	43

Sc: Sample Chain of Custody

44

SAMPLE SUMMARY

SVP-33A L1582381-01 Air			Collected by Jesse Thornton	Collected date/time 02/01/23 13:30	Received da 02/04/23 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 14:29	02/07/23 14:29	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 11:44	02/08/23 11:44	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	nte/time
SVP-33A-DUP L1582381-02 Air			Jesse Thornton	02/01/23 13:30	02/04/23 10	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 15:10	02/07/23 15:10	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 12:56	02/08/23 12:56	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	nte/time
SVP-33B L1582381-03 Air			Jesse Thornton	02/01/23 14:16	02/04/23 10	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 15:51	02/07/23 15:51	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 12:59	02/08/23 12:59	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SVP-32A L1582381-04 Air			Jesse Thornton	02/01/23 11:12	02/04/23 10	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 16:32	02/07/23 16:32	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:02	02/08/23 13:02	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
SVP-32B L1582381-05 Air			Jesse Thornton	02/01/23 11:56	02/04/23 10	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 17:13	02/07/23 17:13	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:04	02/08/23 13:04	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ate/time
SVP-31A L1582381-06 Air			Jesse Thornton	02/01/23 10:02	02/04/23 10	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 17:54	02/07/23 17:54	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:08	02/08/23 13:08	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
SVP-30A L1582381-07 Air			Jesse Thornton	02/02/23 13:17	02/04/23 10	:20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 18:35	02/07/23 18:35	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:12	02/08/23 13:12	BAW	Mt. Juliet, TN

SAMPLE SUMMARY

SVP-30A-DUP L1582381-08 Air			Collected by Jesse Thornton	Collected date/time 02/02/23 13:17	Received da 02/04/23 10	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 19:17	02/07/23 19:17	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:15	02/08/23 13:15	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
SVP-30B L1582381-09 Air			Jesse Thornton	02/02/23 12:43	02/04/23 10	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 19:58	02/07/23 19:58	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:18	02/08/23 13:18	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-29A L1582381-10 Air			Jesse Thornton	02/01/23 15:59	02/04/23 10	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 20:40	02/07/23 20:40	DAH	Mt. Juliet, TN
Organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:21	02/08/23 13:21	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-29B L1582381-11 Air			Jesse Thornton	02/02/23 12:25	02/04/23 10	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
/olatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 21:21	02/07/23 21:21	DAH	Mt. Juliet, TN
rganic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:23	02/08/23 13:23	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-28A L1582381-12 Air			Jesse Thornton	02/02/23 10:29	02/04/23 10	20
M ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
olatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 22:01	02/07/23 22:01	DAH	Mt. Juliet, TN
organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:30	02/08/23 13:30	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
SVP-28B L1582381-13 Air			Jesse Thornton	02/02/23 11:07	02/04/23 10	20
1 ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
olatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 22:43	02/07/23 22:43	DAH	Mt. Juliet, TN
organic Compounds (GC) by Method ASTM 1946	WG2002305	1	02/08/23 13:33	02/08/23 13:33	BAW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
/P-1271-1 L1582381-14 Air			Jesse Thornton	02/02/23 13:46	02/04/23 10	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
olatile Organic Compounds (MS) by Method TO-15	WG2001517	1	02/07/23 23:25	02/07/23 23:25	DAH	Mt. Juliet, TN

Organic Compounds (GC) by Method ASTM 1946

WG2002305

02/08/23 13:36

02/08/23 13:36

BAW

Mt. Juliet, TN

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jennifer A McCurdy Project Manager

Jenrifer McCurdy

PAGE:

5 of 45

DETECTION SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

Separation				CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
SM-1958 SM-1	Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
SMP-1364 ISSS/19610 Chlosofferm FA-F645 T39 O.700 O.731 O.511 C.749 T. W.COURDS	SVP-33A	L1582381-01	Acetone	67-64-1	58.10	1.25	2.97	2.74	6.51		1	WG2001517
SPR-31A SPR-318 Contemment AF-873 SP-90 CO-200 O-413 CO-346 CO-375 1 WISCOSTS	SVP-33A		Chloroform	67-66-3	119	0.200	0.973	0.511			1	
SPR-2304 SPR-22011 Ehnord 64.75 48.10 125 2.36 8.66 63.3 1 WISCOURD	SVP-33A		Chloromethane	74-87-3	50.50		0.413	0.346	0.715		1	
SPR-33A ISBS234-01 Incitoronicomentment 7-80-4 137.00 2000 11 0.960-7 5.41 1 Wisconstruction 1.962-281-01 2.970-20057 2.970-2005	SVP-33A	L1582381-01	Cyclohexane	110-82-7	84.20	0.200	0.689	0.389	1.34		1	WG2001517
SPF 23A UBS228101 Incitoron (controller) Po 94 17.4 0.200 11.2 0.962 5.41 1 WE200057 SPF 33A 180238101 Ambigned (controller) 75.902 84.90 0.200 0.694 0.373 0.33 0.30 1 WE200057 SPF 33A UBS228102 Chroschion (controller) 0.743.0 6.010 1.25 3.07 1.45 3.56 1 WE200057 SPF 33A UBS228102 Chroschion (controller) 0.766.3 1.90 0.200 1.36 81.5 5.33 1 WE200057 SPF 33A OUP 180238102 Chilaroform 67.66-3 1.90 0.200 0.373 0.455 2.21 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.66-3 1.90 0.200 0.373 0.455 2.21 1 WE200057 SPF 33A OUP UBS228102 Incitoron (controller) 75.99-2 8.90 0.200 0.594 1.20 0.474 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.63-2 6.010 1.25 3.07 4.79 118 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.63-2 6.010 1.25 3.07 4.79 118 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.63-2 6.010 1.25 3.07 4.79 118 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.63-2 6.010 1.25 3.07 4.79 118 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.63-2 6.010 1.25 3.07 4.79 118 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.63-2 6.010 1.25 3.07 4.79 1.45 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.63-2 6.010 1.25 3.07 4.79 1.30 1.30 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.64-3 5.010 1.25 2.07 1.30 3.06 1 WE200057 SPF 33A OUP UBS228102 Chilaroform 67.66-3 1.09 0.200 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.372 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400	SVP-33A	L1582381-01	Ethanol	64-17-5	46.10	1.25	2.36	8.66	16.3		1	WG2001517
SPR-33A LBS23H21 ZPR-03MM1 F45-0 E0.10 L5 3.07 L5 3.56 1 WED-00157	SVP-33A		Trichlorofluoromethane	75-69-4	137.40						1	
SVP-33A IISS238H0	SVP-33A	L1582381-01	Methylene Chloride	75-09-2	84.90		0.694	0.373	1.30		1	
SVP-33A IISS238H0	SVP-33A	L1582381-01	2-Propanol	67-63-0	60.10	1.25	3.07	1.45	3.56		1	WG2001517
\$\text{Syr} 23.4 \text{OUP}\$ \$\text{\$152.281-02}\$ \$\text{\$1.582.281-02}\$ \$\$1.582.281-	SVP-33A	L1582381-01	Tetrachloroethylene	127-18-4	166	0.200	1.36				1	WG2001517
SPR-33A-DUP 1582/381-02 Fibandin 64-17-5 4610 1.75 2.36 2.96 5.5 8 1 WGC00997	SVP-33A-DUP	L1582381-02	Acetone	67-64-1	58.10	1.25	2.97	5.72	13.6		1	WG2001517
SVP-33A-DUP ISS2381-02 Inchlorofluoromethisne 75-69-4 137.40 0.200 1.12 0.843 4.74 1 MC200587 SVP-33A-DUP ISS2381-02 Methylene Chloride 75-09-2 8.90 0.200 0.594 1.20 4.17 1 MC200157 SVP-33A-DUP ISS2381-02 Carbonal Chlorofluoromethis 1.78 1 MC200157 SVP-33A-DUP ISS2381-02 Carbonal Chlorofluoromethis 1.78 1 MC200157 SVP-33B LISS2381-03 Chloroflome 67-64-1 1.91 0.200 0.937 0.410 2.00 1 MC200157 SVP-33B LISS2381-03 Chloroflome 67-663 1.99 0.200 0.699 0.596 2.05 1 MC200157 SVP-33B LISS2381-03 Chloroflomomethina 67-663 1.99 0.200 0.699 0.596 2.05 1 MC200157 SVP-33B LISS2381-03 Inchlorofluoromethina 75-694 4610 1.25 2.36 2.63	SVP-33A-DUP	L1582381-02	Chloroform	67-66-3	119	0.200	0.973	0.455	2.21		1	WG2001517
SVP-33A-DUP 1582281-02 Methylene Chloride 75-99-2 84-90 0.200 0.694 1.20 4.17 1 WG200577 SVP-33A-DUP 1582381-02 2-propanel 67-63-0 60-10 1.25 3.07 4.79 11.8 1 WG200577 SVP-33A-DUP 1582381-02 Tolenehorelylene 178-84 166 0.700 1.38 0.522 1.97 1 WG200577 SVP-33B 11582381-03 Cectone 67-64-1 58.10 1.52 2.97 1.33 3.16 1 WG200577 SVP-33B 11582381-03 Octonorm 67-64-3 189 0.700 0.973 0.40 2.00 1 WG200577 SVP-33B 11582381-03 Tolenfolmerene 75-64 137-40 0.20 0.689 0.596 2.05 1 WG200577 SVP-33B 11582381-03 Telchlorofluoremethane 75-64 137-40 0.200 1.12 0.804 4.52 1 WG200577 SVP-32B	SVP-33A-DUP	L1582381-02	Ethanol	64-17-5	46.10	1.25	2.36	29.6	55.8		1	WG2001517
SVP-33A-DUP US82381-02 2-Propanol 67-63-0 60.00 1.25 3.07 4.79 11.8 1 MC200057 SVP-33A-DUP US92381-02 Totachiorochylene 127-184 166 0.200 1.36 7.08 481 1 MC200157 SVP-33B-DUP US92381-02 Column 108-88-3 92.0 0.500 1.88 0.52 1.97 1 MC200157 SVP-33B US23281-03 Chloroform 67-66-3 189 0.200 0.973 0.130 3.16 1 MC200157 SVP-33B US92381-03 Chloroform 67-66-3 189 0.200 0.973 0.150 0.46 1 MC200157 SVP-33B US92381-03 Ethanol 64-17-5 46-10 1.25 2.36 2.63 4.96 1 MC200157 SVP-33B US92381-03 Tetrachiorochylene 127-18-4 166 0.200 1.12 0.80 4.92 1 MC200157 SVP-33B 1.52 2.97 <td>SVP-33A-DUP</td> <td>L1582381-02</td> <td>Trichlorofluoromethane</td> <td>75-69-4</td> <td>137.40</td> <td>0.200</td> <td>1.12</td> <td>0.843</td> <td>4.74</td> <td></td> <td>1</td> <td>WG2001517</td>	SVP-33A-DUP	L1582381-02	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.843	4.74		1	WG2001517
SNP-33A-DUP ISS2381-02 2-Propanel 67-63-0 60.00 125 3 07 4 79 118 1 WEXDOSSIDS SVP-33A-DUP 1582/381-02 Toluene 109-88-3 92.00 0.500 1.88 0.522 1.97 1 WEXDOSSIDS SVP-33B L1582/381-02 Chloroform 67-64-3 18 2.00 0.937 1.33 3.16 1 WEXDOSSIDS SVP-33B L1582/381-03 Chloroform 67-66-3 18 2.00 0.937 0.75 2.05 1 WEXDOSSIDS SVP-33B L1582/381-03 Ethanol 64-75-5 46.10 1.25 2.36 4.96 1.0 WEXDOSSIDS SVP-33B L1582/381-03 Tetrachloroethylene 127-18-4 166 0.200 1.12 0.804 4.92 1 WEXDOSSIDS SVP-33B L1582/381-03 Tetrachloroethylene 127-18-4 166 0.200 1.12 0.804 4.92 1.0 WEXDOSSIDS 5.97-24 1.90 1.	SVP-33A-DUP	L1582381-02	Methylene Chloride	75-09-2	84.90	0.200	0.694	1.20	4.17		1	WG2001517
SVP-33A-DUP ISS238-DQ Column 108-83-3 92.10 0.500 1.88 0.522 1.97 1 Mc20057 SVP-33B LSS238-DQ Chloroform 67-64-1 810 1.25 2.97 1.33 3.16 1 Mc20057 SVP-33B LSS238-DQ Chloroform 67-64-3 189 0.200 0.899 0.596 2.05 1 Mc20057 SVP-33B LSS238-DQ Chlorofunomethane 67-64-1 18-0 1.20 2.06 2.63 4.96 1 Mc20057 SVP-33B LSS238-DQ Trichlorofunomethane 75-69-4 137-0 1.02 1.0 4.52 1 Mc20057 SVP-33B LSS238-DQ Acteone 67-64-1 18-10 2.0 0.37 1.7 1.0 1 Mc20057 SVP-32A LSS238-DQ Chloromethane 74-87-3 8.0 1.2 2.97 7.17 1.0 1 Mc20057 SVP-32A LSS238-DQ Chloromethane <th< td=""><td>SVP-33A-DUP</td><td>L1582381-02</td><td>2-Propanol</td><td>67-63-0</td><td>60.10</td><td>1.25</td><td>3.07</td><td>4.79</td><td>11.8</td><td></td><td>1</td><td>WG2001517</td></th<>	SVP-33A-DUP	L1582381-02	2-Propanol	67-63-0	60.10	1.25	3.07	4.79	11.8		1	WG2001517
SVP-33B LISS23B-LOS Acetone 67-64-1 58.10 L25 2.97 1.33 3.16 1 Mc200157 SVP-33B LISS23B-LOS Chordorform 67-66-3 189 0.200 0.973 0.410 2.00 1 Mc200157 SVP-33B LISS23B-LOS Cyclorization 64-17-5 46.10 1.25 2.36 2.63 4.96 1 Mc200157 SVP-33B LISS23B-LOS Tetrachiorethylene 75-69-4 137-40 0.70 1.12 0.804 4.52 1 Mc200157 SVP-33B LISS23B-LOS Tetrachiorethylene 67-64-1 58.10 1.25 2.97 7.77 1.70 1 Mc200157 SVP-32A LISS23B-LOS Chloroform 67-66-3 189 0.200 0.973 1.57 7.40 1 Mc200157 SVP-32A LISS23B-LOS Chloroform 67-66-3 189 0.200 0.973 1.52 7.40 1 Mc200157 SVP-32A LISS2	SVP-33A-DUP	L1582381-02	Tetrachloroethylene	127-18-4	166	0.200	1.36	70.8	481		1	WG2001517
SVP-33B L1562/381-03 Acetone 67-64-1 58.10 L25 2.97 1.33 3.16 1 WEX-000157 SVP-33B L1582/381-02 Clonforform 67-66-3 189 0.200 0.973 0.410 0.200 1 MCX-00157 SVP-33B L1582/381-03 Clonform 67-66-3 189 0.200 0.689 0.59 2.05 1 MCX-00157 SVP-33B L1582/381-03 Trichitor/funormethane 75-69-4 137-40 0.200 1.26 2.84 4.96 1 MCX-00157 SVP-33B L1582/381-03 Telrachitorethylene 67-64-1 58.10 1.25 2.97 7.17 1.70 1 MCX-00157 SVP-32A L1582/381-04 Chloronemathane 67-64-3 189 0.200 0.973 1.52 7.40 1 MCX-00157 SVP-32A L1582/381-04 Chloronemathane 67-64-3 189 0.200 0.973 1.52 3.6 1.0 MCX-00157 SVP	SVP-33A-DUP	L1582381-02	Toluene	108-88-3	92.10	0.500		0.522	1.97		1	WG2001517
SVP-33B L1582381-03 Cyclohexane 110.82-7 84.20 0.200 0.689 0.596 2.05 1 MC200157 SVP-33B L1582381-03 Ethanol 64-17-5 46.00 1.25 2.36 2.63 4.96 1 WC200157 SVP-33B L1582381-03 Tetrachloroethylene 127-18-4 166 0.200 1.36 28.4 193 1 WC200157 SVP-32A L1582381-04 Chloroform 67-66-1 810 1.25 2.97 7.77 17.0 1 WC200157 SVP-32A L1582381-04 Chloroform 67-66-3 119 0.200 0.973 1.52 7.40 1 WC200157 SVP-32A L1582381-04 Chloroform 64-17-5 46.10 1.52 2.36 8.19 15.4 1 WC200157 SVP-32A L1582381-04 Tetrachloroethylene 127-18-4 137.0 0.20 1.36 8.19 15.4 1 WC200157 SVP-32B L15823	SVP-33B	L1582381-03	Acetone	67-64-1	58.10	1.25	2.97	1.33	3.16		1	WG2001517
SVP-33B Lise23B1-03 Ethanol 64-17-5 46-10 1.25 2.36 2.63 4.96 1 WG2001517 SVP-33B Lise23B1-03 Trichlorofluoromethane 75-694 137.40 0.200 1.12 0.804 4.52 1 WG2001517 SVP-32A Lise32B1-04 Acetone 67-64-1 58.10 1.25 2.97 7.17 17.0 1 WG2001517 SVP-32A Lise32B1-04 Chloroform 67-66-3 119 0.200 0.973 1.52 7.40 1 WG2001517 SVP-32A Lise32B1-04 Chloroformethane 64-17-5 46-10 1.25 2.36 8.19 1.54 1 WG2001517 SVP-32A Lise32B1-04 Ethanol 64-17-5 46-10 1.25 2.36 8.19 1.54 1 WG2001517 SVP-32A Lise32B1-05 Acetone 67-64-1 58-10 1.26 2.97 4.19 9.96 1 WG2001517 SVP-32B Lise23B1-	SVP-33B	L1582381-03	Chloroform	67-66-3	119	0.200	0.973	0.410	2.00		1	WG2001517
SVP-33B L158/23B1-03 Trichlorofluoromethane 75-69-4 137-40 0.200 1.12 0.804 4.52 1 WG2001571 SVP-33B L158/23B1-03 Tetrachloroethylene 177-184 166 0.200 1.36 28.4 193 1 WG2001517 SVP-32A L158/23B1-04 Chloroform 67-66-3 199 0.200 0.973 1.52 7.40 1 WG2001517 SVP-32A L158/23B1-04 Chloromethane 74-87-3 50.50 0.200 0.413 0.276 0.570 1 WG2001517 SVP-32A L158/23B1-04 Chloroform 67-56-4 137.40 0.200 1.12 0.685 3.85 1 WG2001517 SVP-32B L158/23B1-05 Chloroform 67-66-4 187.0 0.20 1.12 0.685 3.85 1 WG2001517 SVP-32B L158/23B1-05 Chloroform 67-66-1 58.10 1.25 2.97 4.19 9.96 1 WG2001517 SV	SVP-33B	L1582381-03	Cyclohexane	110-82-7	84.20	0.200	0.689	0.596	2.05		1	WG2001517
SVP-33B L158/23B1-03 Trichlorofluoromethane 75-69-4 137-40 0.200 1.12 0.804 4.52 1 WG200157 SVP-33B L158/23B1-03 Tetrachloroethylene 127-184 166 0.200 1.36 28.4 193 1 WG200157 SVP-32A L158/23B1-04 Chlorofform 67-66-3 119 0.200 0.973 1.52 7.40 1 WG200157 SVP-32A L158/23B1-04 Chloromethane 74-873 9.0 0.20 0.413 0.276 0.570 1 WG2001517 SVP-32A L158/23B1-04 Chlorofformorethane 75-69-4 137.40 0.20 1.12 0.685 3.85 1 WG2001517 SVP-32B L158/23B1-05 Chlorofformorethane 75-69-4 137.40 0.20 1.26 2.32 1 WG2001517 SVP-32B L158/23B1-05 Chlorofform 67-66-1 58.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B	SVP-33B	L1582381-03	Ethanol	64-17-5	46.10	1.25	2.36	2.63	4.96		1	WG2001517
SVP-33B L15823B1-03 Tetrachloroethylene 127-18-4 166 0.200 1.36 28.4 193 1 WG2001571 SVP-32A L15823B1-04 Acetone 67-64-1 58.10 1.25 2.97 7.17 17.0 1 WG2001571 SVP-32A L15823B1-04 Chlorofrem 67-66-3 119 0.200 0.413 0.276 0.570 1 WG2001571 SVP-32A L15823B1-04 Ethanol 64-17-5 46.10 1.25 2.36 8.19 15.4 1 WG2001571 SVP-32A L15823B1-04 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.685 3.85 1 WG2001571 SVP-32B L15823B1-05 Chlorofemethane 67-69-4 158.10 1.25 2.97 4.19 9.96 1 WG2001571 SVP-32B L15823B1-05 Chlorofemethane 74-67-3 50.50 0.200 0.973 0.476 2.32 1 WG2001571 SVP-32B </td <td>SVP-33B</td> <td>L1582381-03</td> <td>Trichlorofluoromethane</td> <td>75-69-4</td> <td>137.40</td> <td>0.200</td> <td></td> <td>0.804</td> <td>4.52</td> <td></td> <td>1</td> <td>WG2001517</td>	SVP-33B	L1582381-03	Trichlorofluoromethane	75-69-4	137.40	0.200		0.804	4.52		1	WG2001517
SVP-32A L1582381-04 Chloroform 67-66-3 119 0.200 0.973 1.52 7.40 1 WG2001517 SVP-32A L1582381-04 Chloromethane 74-87-3 50.50 0.200 0.413 0.276 0.570 1 WG2001517 SVP-32A L1582381-04 Ethanol Chloromethane 74-87-3 50.50 0.200 0.413 0.276 0.570 1 WG2001517 SVP-32A L1582381-04 Tirchlorofluoromethane 75-69-4 417-6 417-6 0.200 1.12 0.685 3.85 1 WG2001517 SVP-32A L1582381-04 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.7 93.0 1 WG2001517 SVP-32B L1582381-05 Chloroform 67-64-1 58.10 1.25 2.97 419 9.96 1 WG2001517 SVP-32B L1582381-05 Chlorofethane 74-87-3 50.50 0.200 0.973 0.476 2.32 1 WG2001517 SVP-32B L1582381-05 Chlorofethane 74-87-3 50.50 0.200 0.973 0.476 0.320 0.476 0.849 1 WG2001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 WG2001517 SVP-31A L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Chloro	SVP-33B	L1582381-03	Tetrachloroethylene	127-18-4	166	0.200		28.4			1	WG2001517
SVP-32A L1582381-04 Chloroform 67-66-3 119 0.200 0.973 1.52 7.40 1 WG2001577 SVP-32A L1582381-04 Chloromethane 74-87-3 50.50 0.200 0.413 0.276 0.570 1 WG2001517 SVP-32A L1582381-04 Ethanol 4-81-75 46.10 1.25 2.36 1.91 15.4 1 WG2001517 SVP-32A L1582381-04 Trichlorofluoromethane 75-69-4 137.40 0.200 1.13 0.865 3.85 1 WG2001517 SVP-32B L1582381-05 Acetone 67-64-1 58.10 1.25 2.97 4.19 9.96 1 WG2001517 SVP-32B L1582381-05 Chloroform 67-66-3 119 0.200 0.973 0.411 0.849 1 WG2001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1	SVP-32A	L1582381-04	Acetone	67-64-1	58.10	1.25	2.97	7.17	17.0		1	WG2001517
SVP-32A L1582381-04 Ethanol 64-17-5 46.10 1.25 2.36 8.19 15.4 1 WG2001517 SVP-32A L1582381-04 Trichforofluoromethane 75-69-4 137.40 0.200 1.12 0.685 3.85 1 WG2001517 SVP-32A L1582381-05 Acetone 67-64-1 58.10 1.25 2.97 4.19 9.96 1 WG2001517 SVP-32B L1582381-05 Chloroferm 67-66-3 119 0.200 0.973 0.476 2.32 1 WG2001517 SVP-32B L1582381-05 Chloromethane 74-87-3 50.50 0.200 0.413 0.411 0.849 1 WG2001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Trichforofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 WG2001517 SVP-31A	SVP-32A	L1582381-04	Chloroform	67-66-3	119	0.200	0.973				1	WG2001517
SVP-32A L1582381-04 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.685 3.85 1 WG2001517 SVP-32A L1582381-04 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.7 93.0 1 WG2001517 SVP-32B L1582381-05 Chloroform 67-64-1 58.10 1.25 2.97 4.19 9.96 1 WG2001517 SVP-32B L1582381-05 Chloromethane 67-66-3 199 0.200 0.973 0.476 2.32 1 WG2001517 SVP-32B L1582381-05 Chloromethane 64-75 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 WG2001517 SVP-32B L1582381-05 Tetrachloroethylene 127-18-4 166 0.200 1.36 46.1 313 1 WG2001517 SVP-31A L1582381-06 Acetone 67-66-1 58.10 1.25 2.97 1.83 4.35 1 WG2001517 SVP-31A L1582381-06 Chloroform 67-66-3 19 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 WG2001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 WG2001517 SVP-31A L1582381-06 Dichl	SVP-32A	L1582381-04	Chloromethane	74-87-3	50.50	0.200	0.413	0.276	0.570		1	WG2001517
SVP-32A L1582381-04 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.685 3.85 1 W62001517 SVP-32A L1582381-04 Tetrachloroethylene 127.18-4 166 0.200 1.36 13.7 93.0 1 W62001517 SVP-32B L1582381-05 Chloroform 67-66-1 58.10 1.25 2.97 4.19 9.96 1 W62001517 SVP-32B L1582381-05 Chloromethane 67-66-1 58.10 1.25 2.36 0.411 0.849 1 W62001517 SVP-32B L1582381-05 Chloromethane 74-88-3 50.50 0.200 0.413 0.411 0.849 1 W62001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 W62001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 W62001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.36 46.1 313 1 W62001517 SVP-31A L1582381-06 Acetone 67-66-1 58.10 1.25 2.97 1.83 4.35 1 W62001517 SVP-31A L1582381-06 Chloroform 67-66-3 119 0.200 0.973 0.292 1.42 1 W62001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 W62001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 W62001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 12	SVP-32A	L1582381-04	Ethanol	64-17-5	46.10	1.25	2.36	8.19	15.4		1	WG2001517
SVP-32B L1582381-05 Acetone 67-64-1 58.10 1.25 2.97 4.19 9.96 1 WG2001517 SVP-32B L1582381-05 Chloromethane 74-87-3 50.50 0.200 0.476 2.32 1 WG2001517 SVP-32B L1582381-05 Chloromethane 74-87-3 50.50 0.200 0.413 0.411 0.849 1 WG2001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.136 46.1 313 1 WG2001517 SVP-31B L1582381-06 Acetone 67-64-1 58.10 1.25 2.97 1.83 4.35 1 WG2001517 SVP-31A L1582381-06 Chloroform 67-66-3 119 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06	SVP-32A	L1582381-04	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.685	3.85		1	WG2001517
SVP-32B L1582381-05 Chloroform 67-66-3 119 0.200 0.973 0.476 2.32 1 WG2001517 SVP-32B L1582381-05 Chloromethane 74-87-3 50.50 0.200 0.413 0.411 0.849 1 WG2001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 WG2001517 SVP-31B L1582381-05 Tetrachloroethylene 127-18-4 166 0.200 1.36 46.1 313 1 WG2001517 SVP-31A L1582381-06 Acetone 67-66-3 180 1.25 2.97 1.83 4.35 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 WG2001517 SVP-31A	SVP-32A	L1582381-04	Tetrachloroethylene	127-18-4	166	0.200	1.36	13.7	93.0		1	WG2001517
SVP-32B L1582381-05 Chloromethane 74-87-3 50.50 0.200 0.413 0.411 0.849 1 WG2001517 SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 WG2001517 SVP-31A L1582381-06 Acetone 67-64-1 58.10 1.25 2.97 1.83 4.35 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.973 0.417 0.861 1 WG2001517 SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A	SVP-32B	L1582381-05	Acetone	67-64-1	58.10	1.25	2.97	4.19	9.96		1	WG2001517
SVP-32B L1582381-05 Ethanol 64-17-5 46.10 1.25 2.36 3.14 5.92 1 WG2001517 SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 WG2001517 SVP-32B L1582381-05 Tetrachloroethylene 127-18-4 166 0.200 1.36 46.1 313 1 WG2001517 SVP-31A L1582381-06 Acetone 67-64-1 58.10 1.25 2.97 1.83 4.35 1 WG2001517 SVP-31A L1582381-06 Chloromethane 67-66-3 119 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-78-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A </td <td>SVP-32B</td> <td>L1582381-05</td> <td>Chloroform</td> <td>67-66-3</td> <td>119</td> <td>0.200</td> <td>0.973</td> <td>0.476</td> <td>2.32</td> <td></td> <td>1</td> <td>WG2001517</td>	SVP-32B	L1582381-05	Chloroform	67-66-3	119	0.200	0.973	0.476	2.32		1	WG2001517
SVP-32B L1582381-05 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 1.02 5.73 1 WG2001517 SVP-32B L1582381-05 Tetrachloroethylene 127-18-4 166 0.200 1.36 46.1 313 1 WG2001517 SVP-31A L1582381-06 Chloroform 67-66-3 119 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 WG2001517 SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 WG2001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.136 13.5 91.7 1 WG2001517 <	SVP-32B	L1582381-05	Chloromethane	74-87-3	50.50	0.200	0.413	0.411	0.849		1	WG2001517
SVP-32B L1582381-05 Tetrachloroethylene 127-18-4 166 0.200 1.36 46.1 313 1 WG2001517 SVP-31A L1582381-06 Acetone 67-64-1 58.10 1.25 2.97 1.83 4.35 1 WG2001517 SVP-31A L1582381-06 Chloroform 67-66-3 119 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 WG2001517 SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-71-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A L1582381-06 Tetrachloroethylene 127-18-4 166 0.200 0.989 0.729 3.61 1 WG2001517 SVP-3	SVP-32B	L1582381-05	Ethanol	64-17-5	46.10	1.25	2.36	3.14	5.92		1	WG2001517
SVP-31A L1582381-06 Acetone 67-64-1 58.10 1.25 2.97 1.83 4.35 1 WG2001517 SVP-31A L1582381-06 Chloroform 67-66-3 119 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 WG2001517 SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 WG2001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517 SVP-30A	SVP-32B	L1582381-05	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	1.02	5.73		1	WG2001517
SVP-31A L1582381-06 Chloroform 67-66-3 119 0.200 0.973 0.292 1.42 1 WG2001517 SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 WG2001517 SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 WG2001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A L1582381-06 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.5 91.7 1 WG2001517 SVP-30A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517	SVP-32B	L1582381-05	Tetrachloroethylene	127-18-4	166	0.200	1.36	46.1	313		1	WG2001517
SVP-31A L1582381-06 Chloromethane 74-87-3 50.50 0.200 0.413 0.417 0.861 1 WG2001517 SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 WG2001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A L1582381-06 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.5 91.7 1 WG2001517 SVP-30A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517 SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.973 1.15 5.60 1 WG2001517	SVP-31A	L1582381-06	Acetone	67-64-1	58.10	1.25	2.97	1.83	4.35		1	WG2001517
SVP-31A L1582381-06 Ethanol 64-17-5 46.10 1.25 2.36 9.34 17.6 1 WG2001517 SVP-31A L1582381-06 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 WG2001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A L1582381-06 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.5 91.7 1 WG2001517 SVP-30A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517 SVP-30A L1582381-07 Chloroform 67-66-3 119 0.200 0.973 1.15 5.60 1 WG2001517 SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.413 0.201 0.415 1 WG2001517 S	SVP-31A	L1582381-06	Chloroform	67-66-3	119	0.200	0.973	0.292	1.42		1	WG2001517
SVP-31A L1582381-06 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.523 2.94 1 WG2001517 SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A L1582381-06 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.5 91.7 1 WG2001517 SVP-30A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517 SVP-30A L1582381-07 Chloroform 67-66-3 119 0.200 0.973 1.15 5.60 1 WG2001517 SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.413 0.201 0.415 1 WG2001517 SVP-30A L1582381-07 Ethanol 64-17-5 46.10 1.25 2.36 15.2 28.7 1 WG2001517 S	SVP-31A	L1582381-06	Chloromethane	74-87-3	50.50	0.200	0.413	0.417	0.861		1	WG2001517
SVP-31A L1582381-06 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.729 3.61 1 WG2001517 SVP-31A L1582381-06 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.5 91.7 1 WG2001517 SVP-30A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517 SVP-30A L1582381-07 Chloroform 67-66-3 119 0.200 0.973 1.15 5.60 1 WG2001517 SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.413 0.201 0.415 1 WG2001517 SVP-30A L1582381-07 Ethanol 64-17-5 46.10 1.25 2.36 15.2 28.7 1 WG2001517 SVP-30A L1582381-07 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.255 1.43 1 WG2001517 S	SVP-31A	L1582381-06	Ethanol	64-17-5	46.10	1.25	2.36	9.34	17.6		1	WG2001517
SVP-31A L1582381-06 Tetrachloroethylene 127-18-4 166 0.200 1.36 13.5 91.7 1 WG2001517 SVP-30A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517 SVP-30A L1582381-07 Chloroform 67-66-3 119 0.200 0.973 1.15 5.60 1 WG2001517 SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.413 0.201 0.415 1 WG2001517 SVP-30A L1582381-07 Ethanol 64-17-5 46.10 1.25 2.36 15.2 28.7 1 WG2001517 SVP-30A L1582381-07 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.255 1.43 1 WG2001517 SVP-30A L1582381-07 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.479 2.37 1 WG2001517 S	SVP-31A	L1582381-06	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.523	2.94		1	WG2001517
SVP-30A L1582381-07 Acetone 67-64-1 58.10 1.25 2.97 47.6 113 1 WG2001517 SVP-30A L1582381-07 Chloroform 67-66-3 119 0.200 0.973 1.15 5.60 1 WG2001517 SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.413 0.201 0.415 1 WG2001517 SVP-30A L1582381-07 Ethanol 64-17-5 46.10 1.25 2.36 15.2 28.7 1 WG2001517 SVP-30A L1582381-07 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.255 1.43 1 WG2001517 SVP-30A L1582381-07 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.479 2.37 1 WG2001517 SVP-30A L1582381-07 Methylene Chloride 75-09-2 84.90 0.200 0.694 0.723 2.51 1 WG2001517 <td< td=""><td>SVP-31A</td><td>L1582381-06</td><td>Dichlorodifluoromethane</td><td>75-71-8</td><td>120.92</td><td>0.200</td><td>0.989</td><td>0.729</td><td>3.61</td><td></td><td>1</td><td>WG2001517</td></td<>	SVP-31A	L1582381-06	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.729	3.61		1	WG2001517
SVP-30A L1582381-07 Chloroform 67-66-3 119 0.200 0.973 1.15 5.60 1 WG2001517 SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.413 0.201 0.415 1 WG2001517 SVP-30A L1582381-07 Ethanol 64-17-5 46.10 1.25 2.36 15.2 28.7 1 WG2001517 SVP-30A L1582381-07 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.255 1.43 1 WG2001517 SVP-30A L1582381-07 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.479 2.37 1 WG2001517 SVP-30A L1582381-07 Methylene Chloride 75-09-2 84.90 0.200 0.694 0.723 2.51 1 WG2001517 SVP-30A L1582381-07 2-Propanol 67-63-0 60.10 1.25 3.07 2.27 5.58 1 WG2001517	SVP-31A	L1582381-06	Tetrachloroethylene	127-18-4	166	0.200	1.36	13.5	91.7		1	WG2001517
SVP-30A L1582381-07 Chloromethane 74-87-3 50.50 0.200 0.413 0.201 0.415 1 WG2001517 SVP-30A L1582381-07 Ethanol 64-17-5 46.10 1.25 2.36 15.2 28.7 1 WG2001517 SVP-30A L1582381-07 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.255 1.43 1 WG2001517 SVP-30A L1582381-07 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.479 2.37 1 WG2001517 SVP-30A L1582381-07 Methylene Chloride 75-09-2 84.90 0.200 0.694 0.723 2.51 1 WG2001517 SVP-30A L1582381-07 2-Propanol 67-63-0 60.10 1.25 3.07 2.27 5.58 1 WG2001517	SVP-30A	L1582381-07	Acetone	67-64-1	58.10	1.25	2.97	47.6	113		1	WG2001517
SVP-30A L1582381-07 Ethanol 64-17-5 46.10 1.25 2.36 15.2 28.7 1 WG2001517 SVP-30A L1582381-07 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.255 1.43 1 WG2001517 SVP-30A L1582381-07 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.479 2.37 1 WG2001517 SVP-30A L1582381-07 Methylene Chloride 75-09-2 84.90 0.200 0.694 0.723 2.51 1 WG2001517 SVP-30A L1582381-07 2-Propanol 67-63-0 60.10 1.25 3.07 2.27 5.58 1 WG2001517	SVP-30A	L1582381-07	Chloroform	67-66-3	119	0.200	0.973	1.15	5.60		1	WG2001517
SVP-30A L1582381-07 Trichlorofluoromethane 75-69-4 137.40 0.200 1.12 0.255 1.43 1 WG2001517 SVP-30A L1582381-07 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.479 2.37 1 WG2001517 SVP-30A L1582381-07 Methylene Chloride 75-09-2 84.90 0.200 0.694 0.723 2.51 1 WG2001517 SVP-30A L1582381-07 2-Propanol 67-63-0 60.10 1.25 3.07 2.27 5.58 1 WG2001517	SVP-30A	L1582381-07	Chloromethane	74-87-3	50.50	0.200	0.413	0.201	0.415		1	WG2001517
SVP-30A L1582381-07 Dichlorodifluoromethane 75-71-8 120.92 0.200 0.989 0.479 2.37 1 WG2001517 SVP-30A L1582381-07 Methylene Chloride 75-09-2 84.90 0.200 0.694 0.723 2.51 1 WG2001517 SVP-30A L1582381-07 2-Propanol 67-63-0 60.10 1.25 3.07 2.27 5.58 1 WG2001517	SVP-30A	L1582381-07	Ethanol	64-17-5	46.10	1.25	2.36	15.2	28.7		1	WG2001517
SVP-30A L1582381-07 Methylene Chloride 75-09-2 84.90 0.200 0.694 0.723 2.51 1 WG2001517 SVP-30A L1582381-07 2-Propanol 67-63-0 60.10 1.25 3.07 2.27 5.58 1 WG2001517	SVP-30A	L1582381-07	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.255	1.43		1	WG2001517
SVP-30A <u>L1582381-07</u> 2-Propanol 67-63-0 60.10 1.25 3.07 2.27 5.58 1 <u>WG2001517</u>	SVP-30A	L1582381-07	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.479	2.37		1	WG2001517
	SVP-30A	L1582381-07	Methylene Chloride	75-09-2	84.90	0.200	0.694	0.723	2.51		1	WG2001517
SVP-30A <u>L1582381-07</u> Tetrachloroethylene 127-18-4 166 0.200 1.36 13.0 88.3 1 <u>WG2001517</u>	SVP-30A	L1582381-07	2-Propanol	67-63-0	60.10	1.25	3.07	2.27	5.58		1	WG2001517
	SVP-30A	L1582381-07	Tetrachloroethylene	127-18-4	166	0.200	1.36	13.0	88.3		1	WG2001517

DETECTION SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

			CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
SVP-30A-DUP	L1582381-08	Acetone	67-64-1	58.10	1.25	2.97	33.2	78.9		1	WG2001517
SVP-30A-DUP	L1582381-08	Chloroform	67-66-3	119	0.200	0.973	1.26	6.13		1	WG2001517
SVP-30A-DUP	L1582381-08	Cyclohexane	110-82-7	84.20	0.200	0.689	0.221	0.761		1	WG2001517
SVP-30A-DUP	L1582381-08	Ethanol	64-17-5	46.10	1.25	2.36	7.91	14.9		1	WG2001517
SVP-30A-DUP	L1582381-08	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.254	1.43		1	WG2001517
SVP-30A-DUP	L1582381-08	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.474	2.34		1	WG2001517
SVP-30A-DUP	L1582381-08	Tetrachloroethylene	127-18-4	166	0.200	1.36	14.2	96.4		1	WG2001517
SVP-30B	L1582381-09	Acetone	67-64-1	58.10	1.25	2.97	15.7	37.3		1	WG2001517
SVP-30B	L1582381-09	Chloroform	67-66-3	119	0.200	0.973	8.14	39.6		1	WG2001517
SVP-30B	L1582381-09	Cyclohexane	110-82-7	84.20	0.200	0.689	0.670	2.31		1	WG2001517
SVP-30B	L1582381-09	Ethanol	64-17-5	46.10	1.25	2.36	5.55	10.5		1	WG2001517
SVP-30B	L1582381-09	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.272	1.53		1	WG2001517
SVP-30B	L1582381-09	Tetrachloroethylene	127-18-4	166	0.200	1.36	45.4	308		1	WG2001517
SVP-30B	L1582381-09	1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.211	1.15		1	WG2001517
SVP-29A	L1582381-10	Acetone	67-64-1	58.10	1.25	2.97	2.10	4.99		1	WG2001517
SVP-29A	L1582381-10	Chloroform	67-66-3	119	0.200	0.973	0.348	1.69		1	WG2001517
SVP-29A	L1582381-10	Ethanol	64-17-5	46.10	1.25	2.36	2.32	4.37		1	WG2001517
SVP-29A	L1582381-10	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.259	1.46		1	WG2001517
SVP-29A	L1582381-10	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.456	2.26		1	WG2001517
SVP-29A	L1582381-10	Tetrachloroethylene	127-18-4	166	0.200	1.36	13.0	88.3		1	WG2001517
SVP-29B	L1582381-11	Acetone	67-64-1	58.10	1.25	2.97	7.80	18.5		1	WG2001517
SVP-29B	L1582381-11	Chloroform	67-66-3	119	0.200	0.973	0.740	3.60		1	WG2001517
SVP-29B	L1582381-11	Chloromethane	74-87-3	50.50	0.200	0.413	0.208	0.430		1	WG2001517
SVP-29B	L1582381-11	Cyclohexane	110-82-7	84.20	0.200	0.689	0.658	2.27		1	WG2001517
SVP-29B	L1582381-11	1,4-Dioxane	123-91-1	88.10	0.200	0.721	0.659	2.37		1	WG2001517
SVP-29B	L1582381-11	Ethanol	64-17-5	46.10	1.25	2.36	5.96	11.2		1	WG2001517
SVP-29B	L1582381-11	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.250	1.40		1	WG2001517
SVP-29B	L1582381-11	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.454	2.25		1	WG2001517
SVP-29B	L1582381-11	Methylene Chloride	75-09-2	84.90	0.200	0.694	0.209	0.726		1	WG2001517
SVP-29B	L1582381-11	2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	2.67	7.87		1	WG2001517
SVP-29B	L1582381-11	2-Propanol	67-63-0	60.10	1.25	3.07	1.79	4.40		1	WG2001517
SVP-29B	L1582381-11	Tetrachloroethylene	127-18-4	166	0.200	1.36	31.2	212		1	WG2001517
SVP-29B	L1582381-11	1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.298	1.62		1	WG2001517
SVP-28A	L1582381-12	Acetone	67-64-1	58.10	1.25	2.97	3.79	9.01		1	WG2001517
SVP-28A	L1582381-12	Cyclohexane	110-82-7	84.20	0.200	0.689	0.638	2.20		1	WG2001517
SVP-28A	L1582381-12	Ethanol	64-17-5	46.10	1.25	2.36	32.7	61.7		1	WG2001517
SVP-28A	L1582381-12	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.249	1.40		1	WG2001517
SVP-28A	L1582381-12	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.485	2.40		1	WG2001517
SVP-28A	L1582381-12	Methylene Chloride	75-09-2	84.90	0.200	0.694	1.15	3.99		1	WG2001517
SVP-28A	L1582381-12	2-Propanol	67-63-0	60.10	1.25	3.07	4.74	11.7		1	WG2001517
SVP-28A	L1582381-12	Tetrachloroethylene	127-18-4	166	0.200	1.36	11.5	78.1		1	WG2001517
SVP-28B	L1582381-13	Acetone	67-64-1	58.10	1.25	2.97	1.44	3.42		1	WG2001517
SVP-28B	L1582381-13	Cyclohexane	110-82-7	84.20	0.200	0.689	0.779	2.68		1	WG2001517
SVP-28B	L1582381-13	Ethanol	64-17-5	46.10	1.25	2.36	2.47	4.66		1	WG2001517
SVP-28B	L1582381-13	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.263	1.48		1	WG2001517
SVP-28B	L1582381-13	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.457	2.26		1	WG2001517
SVP-28B	L1582381-13	Tetrachloroethylene	127-18-4	166	0.200	1.36	29.7	202		1	WG2001517
SVP-28B	L1582381-13	1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.290	1.58		1	WG2001517
VP-1271-1	L1582381-14	Acetone	67-64-1	58.10	1.25	2.97	14.7	34.9		1	WG2001517
VP-1271-1	L1582381-14	Chloroform	67-66-3	119	0.200	0.973	0.255	1.24		1	WG2001517
VP-1271-1	L1582381-14	Chloromethane	74-87-3	50.50	0.200	0.413	0.228	0.471		1	WG2001517
/P-1271-1	L1582381-14	Ethanol	64-17-5	46.10	1.25	2.36	23.8	44.9		1	WG2001517
/P-1271-1	L1582381-14	Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.520	2.92		1	WG2001517
VP-1271-1	L1582381-14	Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.564	2.79		1	WG2001517
VP-1271-1	L1582381-14	2-Propanol	67-63-0	60.10	1.25	3.07	2.59	6.37		1	WG2001517
VP-1271-1	L1582381-14	Tetrachloroethylene	127-18-4	166	0.200	1.36	8.19	55.6		1	WG2001517

¹Cp

DETECTION SUMMARY

Organic Compounds (GC) by Method ASTM 1946

			CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Client ID	Lab Sample ID	Analyte			%	%			
SVP-33A	L1582381-01	Helium	7440-59-7		0.100	0.154		1	WG2002305
SVP-33A-DUP	L1582381-02	Helium	7440-59-7		0.100	0.245		1	WG2002305
SVP-33B	L1582381-03	Helium	7440-59-7		0.100	0.106		1	WG2002305
SVP-32B	L1582381-05	Helium	7440-59-7		0.100	0.375		1	WG2002305
SVP-30A	L1582381-07	Helium	7440-59-7		0.100	0.302		1	WG2002305
SVP-30A-DUP	L1582381-08	Helium	7440-59-7		0.100	0.336		1	WG2002305
SVP-30B	L1582381-09	Helium	7440-59-7		0.100	0.205		1	WG2002305
SVP-29A	L1582381-10	Helium	7440-59-7		0.100	0.307		1	WG2002305
SVP-29B	L1582381-11	Helium	7440-59-7		0.100	0.232		1	WG2002305
SVP-28B	L1582381-13	Helium	7440-59-7		0.100	1.34		1	WG2002305
VP-1271-1	L1582381-14	Helium	7440-59-7		0.100	0.357		1	WG2002305

Collected date/time: 02/01/23 13:30

L1582381

Volatile Organic Compounds (MS) by Method TO-15

Volatile Organic Co	ompounds	s (MS) by	Method	TO-15					
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	2.74	6.51		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	0.511	2.49		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	0.346	0.715		1	WG2001517
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	0.389	1.34		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	8.66	16.3		1	WG2001517
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.962	5.41		1	WG2001517
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	ND	ND		1	WG2001517
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.373	1.30		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
1-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
2-Propanol	67-63-0	60.10	1.25	3.07	1.45	3.56		1	WG2001517 WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517 WG2001517
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517 WG2001517
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND ND	ND ND		1	WG2001517 WG2001517
retrachloroethylene	79-34-5 127-18-4		0.200	1.37	ND 81.5	553			
		166						1	WG2001517
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517

DATE/TIME:

02/09/23 08:49

Collected date/time: 02/01/23 13:30

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		95.7				WG2001517

Ss

PAGE:

10 of 45

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.154		1	<u>WG2002305</u>

Collected date/time: 02/01/23 13:30

SAMPLE RESULTS - 02

1582381

Volatile Organic Co	ompounds	(MS) by	Method T	O-15					
	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	5.72	13.6		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	0.455	2.21		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2001517
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND FF 0		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	29.6	55.8		1	WG2001517
Ethylbenzene	100-41-4 622-96-8	106 120	0.200 0.200	0.867 0.982	ND ND	ND ND		1	WG2001517 WG2001517
4-Ethyltoluene Trichlorofluoromethane	75-69-4	137.40			0.843	4.74		1	WG2001517 WG2001517
Dichlorodifluoromethane	75-09- 4 75-71-8	120.92	0.200 0.200	1.12 0.989	0.643 ND	ND		1	WG2001517 WG2001517
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517 WG2001517
1,2-Dichlorotetrafluoroethane	76-13-1	171	0.200	1.40	ND	ND		1	WG2001517 WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517 WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517 WG2001517
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	1.20	4.17		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
2-Propanol	67-63-0	60.10	1.25	3.07	4.79	11.8		1	WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
Tetrachloroethylene	127-18-4	166	0.200	1.36	70.8	481		1	WG2001517
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
Toluene	108-88-3	92.10	0.500	1.88	0.522	1.97		1	WG2001517
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517

Collected date/time: 02/01/23 13:30

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		96.7				WG2001517

Organic Compounds (GC) by Method ASTM 1946

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.245		1	WG2002305

Collected date/time: 02/01/23 14:16

1582381

Ss

Cn

Ğl

volume organic oc	ompounds (MS) by Method TO-15										
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch		
Analyte			ppbv	ug/m3	ppbv	ug/m3					
Acetone	67-64-1	58.10	1.25	2.97	1.33	3.16		1	WG2001517		
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517		
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517		
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517		
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517		
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517		
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517		
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517		
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517		
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517		
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517		
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517		
Chloroform	67-66-3	119	0.200	0.973	0.410	2.00		1	WG2001517		
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2001517		
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND 0.500	ND		1	WG2001517		
Cyclohexane	110-82-7	84.20	0.200	0.689	0.596	2.05		1	WG2001517		
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517		
I,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517		
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517		
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517		
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517		
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517		
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517		
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517		
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517		
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517		
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517		
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517		
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517		
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517		
Ethanol	64-17-5	46.10	1.25	2.36	2.63	4.96		1	WG2001517		
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517		
1-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517		
Frichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.804	4.52		1	WG2001517		
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	ND	ND		1	WG2001517		
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517		
,2-Dichlorotetrafluoroethane	76-13-1	171	0.200	1.40	ND	ND		1	WG2001517		
	142-82-5	100	0.200		ND	ND ND		1			
Heptane Hexachloro-1,3-butadiene		261	0.200	0.818 6.73	ND	ND ND			WG2001517		
	87-68-3							1	WG2001517		
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517		
sopropylbenzene Anthodoro Chlorida	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517		
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517		
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517		
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517		
I-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517		
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517		
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517		
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517		
?-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2001517		
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517		
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517		
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517		
Tetrachloroethylene	127-18-4	166	0.200	1.36	28.4	193		1	WG2001517		
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517		
Foluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517		
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517		

Collected date/time: 02/01/23 14:16

1582381

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1.4-Bromofluorobenzene	460-00-4	175	60.0-140		97.7				WG2001517

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.106		1	WG2002305

Collected date/time: 02/01/23 11:12

SAMPLE RESULTS - 04

L158

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	7.17	17.0		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	1.52	7.40		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.373	0.276	0.570		1	WG2001517 WG2001517
	95-49-8	126	0.200	1.03	0.270 ND	ND			
2-Chlorotoluene								1	WG2001517 WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	ND ND	ND ND			WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	8.19	15.4		1	WG2001517
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.685	3.85		1	WG2001517
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	ND	ND		1	WG2001517
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517 WG2001517
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND ND	ND ND		1	WG2001517 WG2001517
4-Methyl-2-pentanone (MIBK)	78-93-3 108-10-1	100.10	1.25	5.12		ND ND			WG2001517 WG2001517
					ND ND			1	
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND ND	ND ND			WG2001517
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
Tetrachloroethylene	127-18-4	166	0.200	1.36	13.7	93.0		1	WG2001517
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517

Collected date/time: 02/01/23 11:12

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.8				WG2001517

- 9 1	(/ -)						
	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	ND		1	WG2002305

L1582381

Collected date/time: 02/01/23 11:56

Volatile Organic Compounds (MS) by Method TO-15										
	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
Acetone	67-64-1	58.10	1.25	2.97	4.19	9.96		1	WG2001517	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517	
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517	
l,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517	
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517	
Chloroform	67-66-3	119	0.200	0.973	0.476	2.32		1	WG2001517	
Chloromethane	74-87-3	50.50	0.200	0.413	0.411	0.849		1	WG2001517	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517	
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG2001517	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517	
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517	
l,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517	
l,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517	
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517	
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517	
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517	
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517	
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517	
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517	
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517	
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517	
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517	
I,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517	
Ethanol	64-17-5	46.10	1.25	2.36	3.14	5.92		1	WG2001517	
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517	
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517	
Frichlorofluoromethane	75-69-4	137.40	0.200	1.12	1.02	5.73		1	WG2001517	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	ND	ND		1	WG2001517	
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517	
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517	
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517	
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517	
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517 WG2001517	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517	
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517 WG2001517	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517 WG2001517	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517 WG2001517	
I-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517 WG2001517	
Methyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG2001517 WG2001517	
итве Итве	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517 WG2001517	
Naphthalene	91-20-3	128	0.200	3.30	ND	ND		1	WG2001517 WG2001517	
l-Propanol	91-20-3 67-63-0	60.10	1.25	3.30	ND ND	ND		1	WG2001517 WG2001517	
ropene	115-07-1	42.10	1.25	2.15	ND ND	ND ND		1	WG2001517 WG2001517	
·	100-42-5	104	0.200	0.851	ND ND	ND		1		
Styrene ,1,2,2-Tetrachloroethane	79-34-5		0.200	1.37	ND ND	ND ND		1	WG2001517	
		168							WG2001517	
etrachloroethylene	127-18-4	166	0.200	1.36	46.1	313 ND		1	WG2001517	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517	
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517	
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517	

Collected date/time: 02/01/23 11:56

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		97.4				WG2001517

	<u>'</u>	, , ,						
		CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte				%	%			
Helium		7440-59-7		0.100	0.375		1	WG2002305

Collected date/time: 02/01/23 10:02

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	1.83	4.35		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND ND	ND ND		1	WG2001517 WG2001517
*	75-27-4	164	0.200	1.04	ND	ND		1	
Bromodichloromethane								1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND			WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	0.292	1.42		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	0.417	0.861		1	WG2001517
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1-Dichloroethene	75-3 1 -3	96.90	0.200	0.793	ND	ND		1	WG2001517
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
thanol	64-17-5	46.10	1.25	2.36	9.34	17.6		1	WG2001517
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.523	2.94		1	WG2001517
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.729	3.61		1	WG2001517
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
eptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
opropylbenzene	98-82-8	120.20	0.030	0.983	ND	ND		1	WG2001517 WG2001517
,									
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
lethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2001517
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
etrachloroethylene	127-18-4	166	0.200	1.36	13.5	91.7		1	WG2001517
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
oluene	103-33-3	92.10	0.500	1.88	ND	ND		1	WG2001517
Oluciic	100 00-3	JZ.10	0.500	1.00	NU	ND			***************************************

Collected date/time: 02/01/23 10:02

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1.4-Bromofluorobenzene	460-00-4	175	60.0-140		97.4				WG2001517

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	ND		1	WG2002305

Collected date/time: 02/02/23 13:17

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	47.6	113		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	1.15	5.60		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	0.201	0.415		1	WG2001517
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
rans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	15.2	28.7		1	WG2001517
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
l-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.255	1.43		1	WG2001517
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.479	2.37		1	WG2001517
,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
ı-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.723	2.51		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
laphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
?-Propanol	67-63-0	60.10	1.25	3.07	2.27	5.58		1	WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
ityrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
								1	

109-99-9

108-88-3

120-82-1

72.10

92.10

181

0.200

0.500

0.630

Tetrahydrofuran

1,2,4-Trichlorobenzene

Toluene

ND

ND

ND

0.590

1.88

4.66

ND

ND

ND

WG2001517

WG2001517

WG2001517

Ss

Cn

Ds

[°]Sr

Ğl

Collected date/time: 02/02/23 13:17

1582381

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG2001517

³ Ss

PAGE:

22 of 45

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.302		1	WG2002305

Collected date/time: 02/02/23 13:17

SAMPLE RESULTS - 08

Volatile Organic Co	mpourius	(IVIS) by	Method i	U-15					
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	33.2	78.9		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	1.26	6.13		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2001517
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	0.221	0.761		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	7.91	14.9		1	WG2001517
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.254	1.43		1	WG2001517
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.474	2.34		1	WG2001517
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
Tetrachloroethylene	127-18-4	166	0.200	1.36	14.2	96.4		1	WG2001517
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517

Collected date/time: 02/02/23 13:17

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.0				WG2001517

	'	\ / /						
		CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte				%	%			
Helium		7440-59-7		0.100	0.336		1	WG2002305

Collected date/time: 02/02/23 12:43

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	J. J. II	**1.	ppbv	ug/m3	ppbv	ug/m3	<u> </u>	Silution	231011
Acetone	67-64-1	58.10	1.25	2.97	15.7	37.3		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517 WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	8.14	39.6		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2001517
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	0.670	2.31		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	5.55	10.5		1	WG2001517
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.272	1.53		1	WG2001517
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	ND	ND		1	WG2001517
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
Tetrachloroethylene	127-18-4	166	0.200	1.36	45.4	308		1	WG2001517
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517

Collected date/time: 02/02/23 12:43

1582381

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.211	1.15		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.4				WG2001517

3Ss 4Cn

Organic Compounds (GC) by Method ASTM 1946

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.205		1	WG2002305

Ğl

Collected date/time: 02/01/23 15:59

L1582381

Volatile Organic Co	•					D !:	0 1:5	D11 11	D
Analyta	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte	67.644	F0.40	ppbv	ug/m3	ppbv	ug/m3		1	WC2004E47
Acetone	67-64-1	58.10	1.25	2.97	2.10	4.99		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	0.348	1.69		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2001517
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	2.32	4.37		1	WG2001517
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.259	1.46		1	WG2001517
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.456	2.26		1	WG2001517
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
Isopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517 WG2001517
Tetrachloroethylene	127-18-4	166	0.200	1.36	13.0	88.3		1	WG2001517 WG2001517
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517 WG2001517
Toluene	109-99-9	92.10	0.500	1.88	ND ND	ND ND		1	WG2001517 WG2001517
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND ND	ND ND		1	WG2001517 WG2001517
1,2,7-1110110100001120110	120-02-1	101	0.030	4.00	ND	ND			WUZUUIJI/

Collected date/time: 02/01/23 15:59

Volatile Organic Compounds (MS) by Method TO-15

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		97.0				WG2001517

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.307		1	WG2002305

Collected date/time: 02/02/23 12:25

L1582381

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	7.80	18.5		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	0.740	3.60		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	0.208	0.430		1	WG2001517
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND 0.659	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	0.658	2.27		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
rans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
1,4-Dioxane	123-91-1	88.10	0.200	0.721	0.659	2.37		1	WG2001517
Ethanol	64-17-5	46.10	1.25	2.36	5.96	11.2		1	WG2001517
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.250	1.40		1	WG2001517 WG2001517
								1	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.454	2.25		1	WG2001517
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
Methylene Chloride	75-09-2	84.90	0.200	0.694	0.209	0.726		1	WG2001517
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	2.67	7.87		1	WG2001517
1-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
ИТВЕ	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
2-Propanol	67-63-0	60.10	1.25	3.07	1.79	4.40		1	WG2001517
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
,1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517 WG2001517
Tetrachloroethylene	127-18-4	166	0.200	1.36	31.2	212 ND		1	WG2001517
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517

Collected date/time: 02/02/23 12:25

1582381

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.298	1.62		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		96.4				WG2001517

⁴Cn

Ss

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.232		1	WG2002305

Collected date/time: 02/02/23 10:29

1582381

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			_
Acetone	67-64-1	58.10	1.25	2.97	3.79	9.01		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517
Promomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517 WG2001517
	67-66-3	119		0.973	ND	ND		1	
hloroform			0.200						WG2001517
hloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2001517
-Chlorotoluene	95-49-8	126	0.200	1.03	ND 0.630	ND		1	WG2001517
yclohexane	110-82-7	84.20	0.200	0.689	0.638	2.20		1	WG2001517
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
thanol	64-17-5	46.10	1.25	2.36	32.7	61.7		1	WG2001517
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.249	1.40		1	WG2001517
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.485	2.40		1	WG2001517
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND ND		1	WG2001517
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
eptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517 WG2001517
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND ND	ND ND		1	WG2001517 WG2001517
			0.630	2.22	ND ND	ND ND		1	
Hexane	110-54-3	86.20							WG2001517
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
ethylene Chloride	75-09-2	84.90	0.200	0.694	1.15	3.99		1	WG2001517
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
ethyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
Propanol	67-63-0	60.10	1.25	3.07	4.74	11.7		1	WG2001517
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
etrachloroethylene	127-18-4	166	0.200	1.36	11.5	78.1		1	WG2001517
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
oluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517

Collected date/time: 02/02/23 10:29

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		96.0				WG2001517

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	ND		1	WG2002305

Collected date/time: 02/02/23 11:07

Volatile Organic Co	mpounds (MS)) by Method	TO-15
---------------------	--------------	-------------	-------

Volatile Organic Compounds (MS) by Method TO-15										
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch	
Analyte			ppbv	ug/m3	ppbv	ug/m3				
Acetone	67-64-1	58.10	1.25	2.97	1.44	3.42		1	WG2001517	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517	
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG2001517	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG2001517	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG2001517	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517	
1,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517	
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517	
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517	
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517	
Chloroform	67-66-3	119	0.200	0.973	ND	ND		1	WG2001517	
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG2001517	
2-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517	
Cyclohexane	110-82-7	84.20	0.200	0.689	0.779	2.68		1	WG2001517	
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517	
1,2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517	
1,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517	
1,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517	
1,4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517	
1,2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517	
1,1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517	
,1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517	
cis-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517	
trans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517	
1,2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517	
cis-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517	
trans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517	
1,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517	
Ethanol	64-17-5	46.10	1.25	2.36	2.47	4.66		1	WG2001517	
Ethylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517	
4-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517	
Trichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.263	1.48		1	WG2001517	
Dichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.457	2.26		1	WG2001517	
1,1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517	
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517	
Heptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517	
Hexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517	
n-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517	
Methylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517	
Methyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517	
2-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG2001517	
4-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517	
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517	
MTBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517	
Naphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517 WG2001517	
2-Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG2001517	
Propene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517 WG2001517	
Styrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517 WG2001517	
1,1,2,2-Tetrachloroethane	79-34-5	168	0.200		ND ND	ND ND		1		
				1.37					WG2001517	
Tetrachloroethylene	127-18-4	166	0.200	1.36	29.7	202 ND		1	WG2001517	
Tetrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517	
Toluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517	
1,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517	

Collected date/time: 02/02/23 11:07

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	0.290	1.58		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		96.8				WG2001517

PAGE:

34 of 45

	CAS #	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	1.34		1	WG2002305

Collected date/time: 02/02/23 13:46

L1582381

Volatile Organic Compounds (MS) by Method TO-15

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte	** *** **		ppbv	ug/m3	ppbv	ug/m3			
Acetone	67-64-1	58.10	1.25	2.97	14.7	34.9		1	WG2001517
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG2001517
Benzene	71-43-2	78.10	0.200	0.639	ND	ND		1	WG2001517
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND ND		1	WG2001517 WG2001517
*	75-27-4	164	0.200	1.04	ND	ND		1	
Bromodichloromethane								1	WG2001517
Bromoform	75-25-2	253	0.600	6.21	ND	ND			WG2001517
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG2001517
,3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG2001517
Carbon disulfide	75-15-0	76.10	0.200	0.622	ND	ND		1	WG2001517
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG2001517
Chlorobenzene	108-90-7	113	0.200	0.924	ND	ND		1	WG2001517
Chloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG2001517
Chloroform	67-66-3	119	0.200	0.973	0.255	1.24		1	WG2001517
Chloromethane	74-87-3	50.50	0.200	0.413	0.228	0.471		1	WG2001517
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG2001517
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG2001517
Dibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG2001517
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG2001517
,2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG2001517
,3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG2001517
4-Dichlorobenzene	106-46-7	147	0.200	1.20	ND	ND		1	WG2001517
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG2001517
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG2001517
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG2001517
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG2001517
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG2001517
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG2001517
is-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG2001517
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG2001517
,4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG2001517
thanol	64-17-5	46.10	1.25	2.36	23.8	44.9		1	WG2001517
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG2001517
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG2001517
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.520	2.92		1	WG2001517
Pichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.564	2.79		1	WG2001517
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG2001517
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG2001517
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG2001517
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG2001517
-Hexane	110-54-3	86.20	0.630	2.22	ND	ND		1	WG2001517
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG2001517
lethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG2001517
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG2001517
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND ND		1	WG2001517 WG2001517
-Butanone (MEK) -Methyl-2-pentanone (MIBK)									
	108-10-1	100.10	1.25	5.12	ND	ND		1	WG2001517
Methyl methacrylate	80-62-6	100.12	0.200	0.819	ND	ND		1	WG2001517
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG2001517
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG2001517
-Propanol	67-63-0	60.10	1.25	3.07	2.59	6.37		1	WG2001517
ropene	115-07-1	42.10	1.25	2.15	ND	ND		1	WG2001517
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG2001517
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG2001517
etrachloroethylene	127-18-4	166	0.200	1.36	8.19	55.6		1	WG2001517
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG2001517
oluene	108-88-3	92.10	0.500	1.88	ND	ND		1	WG2001517
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG2001517

Ss

Collected date/time: 02/02/23 13:46

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG2001517
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG2001517
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG2001517
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG2001517
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG2001517
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG2001517
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG2001517
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG2001517
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG2001517
m&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG2001517
o-Xylene	95-47-6	106	0.200	0.867	ND	ND		1	WG2001517
TPH (GC/MS) Low Fraction	8006-61-9	101	200	826	ND	ND		1	WG2001517
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.4				WG2001517

	CAS#	Mol. Wt.	RDL	Result	Qualifier	Dilution	Batch
Analyte			%	%			
Helium	7440-59-7		0.100	0.357		1	WG2002305

WG2001517

QUALITY CONTROL SUMMARY

L1582381-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Method Blank (MB)

Method Blank (MB))				
(MB) R3888303-3 02/07/	23 10:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	ppbv		ppbv	ppbv	
Acetone	U		0.584	1.25	
Allyl Chloride	U		0.114	0.200	
Benzene	U		0.0715	0.200	
Benzyl Chloride	U		0.0598	0.200	i
Bromodichloromethane	U		0.0702	0.200	
Bromoform	U		0.0732	0.600	١
Bromomethane	U		0.0982	0.200	
1,3-Butadiene	U		0.104	2.00	
Carbon disulfide	U		0.102	0.200	Ī
Carbon tetrachloride	U		0.0732	0.200	
Chlorobenzene	U		0.0832	0.200	١
Chloroethane	U		0.0996	0.200	
Chloroform	U		0.0717	0.200	
Chloromethane	U		0.103	0.200	ı
2-Chlorotoluene	U		0.0828	0.200	١
Cyclohexane	U		0.0753	0.200	ı
Dibromochloromethane	U		0.0727	0.200	
1,2-Dibromoethane	U		0.0721	0.200	
1,2-Dichlorobenzene	U		0.128	0.200	ſ
1,3-Dichlorobenzene	U		0.182	0.200	
1,4-Dichlorobenzene	U		0.0557	0.200	L
1,2-Dichloroethane	U		0.0700	0.200	
1,1-Dichloroethane	U		0.0723	0.200	
1,1-Dichloroethene	U		0.0762	0.200	
cis-1,2-Dichloroethene	U		0.0784	0.200	
trans-1,2-Dichloroethene	U		0.0673	0.200	
1,2-Dichloropropane	U		0.0760	0.200	
cis-1,3-Dichloropropene	U		0.0689	0.200	
trans-1,3-Dichloropropene	U		0.0728	0.200	
1,4-Dioxane	U		0.0833	0.200	
Ethanol	U		0.265	1.25	
Ethylbenzene	U		0.0835	0.200	
4-Ethyltoluene	U		0.0783	0.200	
Trichlorofluoromethane	U		0.0819	0.200	
Dichlorodifluoromethane	U		0.137	0.200	
1,1,2-Trichlorotrifluoroethane	U		0.0793	0.200	
1,2-Dichlorotetrafluoroethane	U		0.0890	0.200	
Heptane	U		0.104	0.200	
Hexachloro-1,3-butadiene	U		0.105	0.630	
n-Hexane	U		0.206	0.630	

WG2001517

QUALITY CONTROL SUMMARY

L1582381-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Method Blank (MB)

Volatile Organic Compounds (MS) by Method TO-15

(MB) R3888303-3 02/07/23 10:15 MB RDL MB Result MB Qualifier MB MDL Analyte ppbv ppbv ppbv Isopropylbenzene U 0.0777 0.200 U 0.0979 0.200 Methylene Chloride Methyl Butyl Ketone U 0.133 1.25 U 0.0814 1.25 2-Butanone (MEK) 4-Methyl-2-pentanone (MIBK) U 0.0765 1.25 Methyl Methacrylate U 0.0876 0.200 MTBE U 0.0647 0.200 Naphthalene U 0.350 0.630 2-Propanol U 0.264 1.25 0.166 0.0932 1.25 Propene 0.0788 0.200 Styrene U 0.0743 1,1,2,2-Tetrachloroethane 0.200 Tetrachloroethylene U 0.0814 0.200 U 0.0734 Tetrahydrofuran 0.200 U 0.0870 0.500 Toluene 1,2,4-Trichlorobenzene U 0.148 0.630 1,1,1-Trichloroethane U 0.0736 0.200 1,1,2-Trichloroethane 0.0775 0.200 U 0.0680 0.200 Trichloroethylene 1,2,4-Trimethylbenzene 0.0764 0.200 U 0.0779 1,3,5-Trimethylbenzene 0.200 2,2,4-Trimethylpentane U 0.133 0.200 Vinyl chloride U 0.0949 0.200 Vinyl Bromide U 0.0852 0.200 0.200 Vinyl acetate U 0.116 m&p-Xylene U 0.135 0.400 o-Xylene 0.200 U 0.0828 TPH (GC/MS) Low Fraction 39.7 200 60.0-140 (S) 1,4-Bromofluorobenzene 95.9

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3888303-1	02/07/23 08:53 •	(LCSD) R3888303-2	02/07/23 09:35
------	--------------	------------------	-------	--------------	----------------

ACCOUNT:

(200) 110000000 1 02/07	720 00.00 (200	<i>3D)</i> (1000000	3 2 02/07/20 0	3.55						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Acetone	3.75	4.31	4.47	115	119	70.0-130			3.64	25
Allyl Chloride	3.75	4.22	4.24	113	113	70.0-130			0.473	25
Benzene	3.75	4.29	4.37	114	117	70.0-130			1.85	25
Benzyl Chloride	3.75	4.26	4.34	114	116	70.0-152			1.86	25

PROJECT:

Ss

Cn

Ds

Sr

Qc

Ğl

Sc

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15 L158238

L1582381-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3888303-1 02/07/23 08:53 • (LCSD) R3888303-2 02/07/23 09:35

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
romodichloromethane	3.75	4.33	4.44	115	118	70.0-130			2.51	25	
Bromoform	3.75	4.41	4.46	118	119	70.0-130			1.13	25	
Bromomethane	3.75	3.92	4.07	105	109	70.0-130			3.75	25	
l,3-Butadiene	3.75	4.14	4.19	110	112	70.0-130			1.20	25	
Carbon disulfide	3.75	4.18	4.33	111	115	70.0-130			3.53	25	
Carbon tetrachloride	3.75	4.30	4.36	115	116	70.0-130			1.39	25	
Chlorobenzene	3.75	4.24	4.27	113	114	70.0-130			0.705	25	
Chloroethane	3.75	3.81	3.94	102	105	70.0-130			3.35	25	
Chloroform	3.75	4.18	4.33	111	115	70.0-130			3.53	25	
Chloromethane	3.75	4.31	4.36	115	116	70.0-130			1.15	25	
2-Chlorotoluene	3.75	4.34	4.36	116	116	70.0-130			0.460	25	
Cyclohexane	3.75	4.21	4.28	112	114	70.0-130			1.65	25	
Dibromochloromethane	3.75	4.37	4.46	117	119	70.0-130			2.04	25	
1,2-Dibromoethane	3.75	4.28	4.32	114	115	70.0-130			0.930	25	
1,2-Dichlorobenzene	3.75	4.35	4.36	116	116	70.0-130			0.230	25	
1,3-Dichlorobenzene	3.75	4.36	4.43	116	118	70.0-130			1.59	25	
l,4-Dichlorobenzene	3.75	4.50	4.51	120	120	70.0-130			0.222	25	
,2-Dichloroethane	3.75	4.32	4.41	115	118	70.0-130			2.06	25	
1,1-Dichloroethane	3.75	4.21	4.33	112	115	70.0-130			2.81	25	
1,1-Dichloroethene	3.75	4.28	4.38	114	117	70.0-130			2.31	25	
cis-1,2-Dichloroethene	3.75	4.23	4.31	113	115	70.0-130			1.87	25	
trans-1,2-Dichloroethene	3.75	4.22	4.39	113	117	70.0-130			3.95	25	
1,2-Dichloropropane	3.75	4.21	4.24	112	113	70.0-130			0.710	25	
cis-1,3-Dichloropropene	3.75	4.16	4.22	111	113	70.0-130			1.43	25	
trans-1,3-Dichloropropene	3.75	4.34	4.37	116	117	70.0-130			0.689	25	
1,4-Dioxane	3.75	4.24	4.32	113	115	70.0-140			1.87	25	
Ethanol	3.75	4.31	4.39	115	117	55.0-148			1.84	25	
Ethylbenzene	3.75	4.35	4.43	116	118	70.0-130			1.82	25	
4-Ethyltoluene	3.75	4.29	4.44	114	118	70.0-130			3.44	25	
Trichlorofluoromethane	3.75	4.31	4.43	115	118	70.0-130			2.75	25	
Dichlorodifluoromethane	3.75	4.19	4.35	112	116	64.0-139			3.75	25	
1,1,2-Trichlorotrifluoroethane	3.75	4.23	4.32	113	115	70.0-130			2.11	25	
,2-Dichlorotetrafluoroethane	3.75	4.26	4.35	114	116	70.0-130			2.09	25	
Heptane	3.75	4.36	4.55	116	121	70.0-130			4.26	25	
Hexachloro-1,3-butadiene	3.75	4.45	4.52	119	121	70.0-151			1.56	25	
n-Hexane	3.75	4.28	4.36	114	116	70.0-130			1.85	25	
sopropylbenzene	3.75	4.30	4.37	115	117	70.0-130			1.61	25	
Methylene Chloride	3.75	4.24	4.28	113	114	70.0-130			0.939	25	
Methyl Butyl Ketone	3.75	4.59	4.72	122	126	70.0-149			2.79	25	
Methyl Ethyl Ketone	3.75	4.35	4.49	116	120	70.0-130			3.17	25	

СР

(S) 1,4-Bromofluorobenzene

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15

L1582381-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(I CC) D38883U3 1	1 02/07/23 08.53 .	(LCSD) R3888303-2	02/07/22 00·35
II U > 1 K. > 0 0 0 . > U. > = 1	1 UZ/UZ/Z3 UA 33 (• II UЭГЛ К.ЭООО.ЭU.Э=/	0//0///3 09.33

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
4-Methyl-2-pentanone (MIBK)	3.75	4.64	4.73	124	126	70.0-139			1.92	25	
Methyl Methacrylate	3.75	4.49	4.59	120	122	70.0-130			2.20	25	
MTBE	3.75	4.20	4.25	112	113	70.0-130			1.18	25	
Naphthalene	3.75	4.36	4.43	116	118	70.0-159			1.59	25	
2-Propanol	3.75	4.39	4.47	117	119	70.0-139			1.81	25	
Propene	3.75	4.19	4.27	112	114	64.0-144			1.89	25	
Styrene	3.75	4.31	4.35	115	116	70.0-130			0.924	25	
1,1,2,2-Tetrachloroethane	3.75	4.22	4.23	113	113	70.0-130			0.237	25	
Tetrachloroethylene	3.75	4.25	4.35	113	116	70.0-130			2.33	25	
Tetrahydrofuran	3.75	4.40	4.49	117	120	70.0-137			2.02	25	
Toluene	3.75	4.32	4.39	115	117	70.0-130			1.61	25	
1,2,4-Trichlorobenzene	3.75	4.39	4.49	117	120	70.0-160			2.25	25	
1,1,1-Trichloroethane	3.75	4.27	4.37	114	117	70.0-130			2.31	25	
1,1,2-Trichloroethane	3.75	4.21	4.40	112	117	70.0-130			4.41	25	
Trichloroethylene	3.75	4.23	4.25	113	113	70.0-130			0.472	25	
1,2,4-Trimethylbenzene	3.75	4.34	4.38	116	117	70.0-130			0.917	25	
1,3,5-Trimethylbenzene	3.75	4.39	4.29	117	114	70.0-130			2.30	25	
2,2,4-Trimethylpentane	3.75	4.29	4.38	114	117	70.0-130			2.08	25	
Vinyl chloride	3.75	3.93	4.08	105	109	70.0-130			3.75	25	
Vinyl Bromide	3.75	4.17	4.20	111	112	70.0-130			0.717	25	
Vinyl acetate	3.75	3.81	4.07	102	109	70.0-130			6.60	25	
m&p-Xylene	7.50	8.69	8.78	116	117	70.0-130			1.03	25	
o-Xylene	3.75	4.22	4.24	113	113	70.0-130			0.473	25	
TPH (GC/MS) Low Fraction	203	200	206	98.5	101	70.0-130			2.96	25	

60.0-140

98.3

96.6

WG2002305

QUALITY CONTROL SUMMARY

Organic Compounds (GC) by Method ASTM 1946

L1582381-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Method Blank (MB)

(MB) R3888690-3	3 02/08/23 11:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Helium	U		0.0259	0.100

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3888690-1 02/0	CS) R3888690-1 02/08/23 11:17 • (LCSD) R3888690-2 02/08/23 11:21												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	%	%	%	%	%	%			%	%			
Helium	2.50	2.89	2.77	116	111	70.0-130			4.24	25			

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:			Billing Information	on:			1	Anal	ucie	Chain of Custody Page 1 of 2
RMD Environmental - 1371 Oakland Blvd. Suite 200	Walnut Creek, CA		Accounts Pay 1371 Oakland Suite 200 Walnut Creek	yable I Blvd.				Anal	7515	Pace PEOPLE ADVANCING SCIENCE MT JULIET, TN
Report To: Erin Male			Email To: iinouye@rmdes.n	net				12065 Lebanon Road Mt Juliet, TN 37122 Phone: 615-758-5858 Alt 800-767-5859 Submitting a sample via this chain of custody constitutes acknowledgment and acceptance		
Project Police Credit Union Description:		City/State Collected:	ian Franc	4				of the Pace Terms and Conditions found at: https://info.pacelabs.com/hubfs/pas- standard-terms.pdf		
Phone: 415-571-6627	Client Project # 01-DTSC-007		Lab Project # RMDENVP		ma			K103		
Collected by (print): Seec Thornton	Site/Facility ID #		P.O. #				M Summa	Summa		Acctnum: RMDENVPHCA
Collected by (signature):	Rush? (Lab MUST 8	nree Day	STA	Date	Results Needed		5, HELIUM	5SIM Sun		Template: T204372 Prelogin: P968419 PM: 3828 - Jennifer A McCurdy
	Two Day		Coll	lection	Pressure/Vacuum	0-1;	7		PB: (06 01/03/v3	
Sample ID	Can #	Flow Cont. #	Date	Time	Initial	Final	F	10		Shipped Via: FedEX Ground Rem./Contaminant Sample # (lab only)
SUP-33 A	005631	007860	2/1/23	1330	- 28	-6	X			=01
SUP-33 A- DUP	010632	007860	2/1/23	1330	-28	-6	1			-02
Sup- 33B	022260	011485	2/1/23		-30	-5				02
SUP- 32 A	022548	007461	2/1/23	11 12	- 30	-5				704
5UP- 32B	010752	006824	2/1/23	1156	-28	-5				6
50P-31A	005461	011481	2/1/23	1002	-29	-5				-00
SUP- 30 A	008917	011 460	2/2/23	1317	-28	-6				
5 UP- 30 A- Dup	012432	011460		1317	-28	-6				-06
5UP-30 B	006468	006410	2/2/23	1243	-29	-5	1/			-09
Remarks:			Samples re	turned via:	4	Tracking #			Uold #	
Relinquished by: (Signature) Date: Time: 2/3/23 1/0		5 Received b	FedExCou by: (Signature)	DESCRIPTION OF				Hold # Condition: (lab use only)		
linquished by : (Signature) Date: Time:			Received b	Date:	Time:			eal Intact: Y N NA		
Relinquished by : (Signature)	by : (Signature) Date: Time:				Received for lab by (Signature)				NCF:	

							Marin Control					00
Company Name/Address: RMD Environmental - Walnut Creek, CA		Billing Information: Accounts Payable 1371 Oakland Blvd.					Ana	lysis	Chain of Custod	y Page of		
1371 Oakland Blvd. Suite 200				Suite 200 Walnut Creek								ACC ADVANCING SCIENCE JLIET, TN
Report To: Erin Male				Email To: iinouye@rmdes.n	et;emale@rmdes.i	net					constitutes acknow	Alt: 800-767-5859 le via this chain of custody ledgment and acceptance
Project Police Credit Union Description:			ty/State ollected:	San France	15 co , CA		Please Circle:				https://info.pacelab standard-terms.pdi	
Phone: 415-571-6627	O1-DTSC-007			Lab Project # RMDENVP	HCA-01DT	SC007		Summa			SDG # C	161381
Collected by (print):	Site/Facility ID #			P.O. #					ıma		Acctnum: RMDENVPHC	
Collected by (signature):	Rush? (Lab MUST Be Notified) Same Day Three Day Next Day Five Day Two Day)	Date Results Needed STANDARD TAT				5, HELIUM	5SIM Summa		Prelogin: P968419 PM: 3828 - Jennifer A McCurr	
6 - 6 - 10				Coll	lection	Canister	Pressure/Vacuum	0-1	TO-1			FedEX Ground
Sample ID	Can #	Flov	v Cont. #	Date	Time	Initial	Final	-			Rem./Contaminar	
SUP-29A	010656	0111	23	2/1/23	1559	- 30	- 5	1				-10
5vp-29B	005173	007	462	2/2/23	1225	-28	-5	1				-11
5UP-28A	021508	00 5	972	2/2/23	1029	-30	-5					-17
GVP-288	022189	006	799	2/123	1107	-28	-5					-12
SUP-1271-1 VP-1271-1	008512		727	2/2/23	1346	-30	-5	J				- 14
Remarks:												
					turned via: FedEx	rier	Tracking #			Hold#		
Relinquished by : (Signature)	Da Z	e: -13/23	Time:		y: (Signature)		Date:	Time:		Condition	n: (lab	use only)
Relinquished by : (Signature)	Da	e:	Time:	Received b	y: (Signature)		Date:	Γime:		COC Sea	Intact: V	N NA
Relinquished by : (Signature)	Dat	e;	Time:	Received for	or lab by: (Signat	ture)	Date: 2/4/23	Time:	()2()	NCF:	Allega Casa	NNA

Pace Analytical® ANALYTICAL REPORT

February 16, 2023

Revised Report

RMD Environmental - Walnut Creek, CA

Sample Delivery Group: L1582384

Samples Received: 02/04/2023

Project Number: 01-DTSC-007

Description: Police Credit Union

Report To: Ivy Inouye

1371 Oakland Blvd.

Suite 200

Walnut Creek, CA 94596

Entire Report Reviewed By: Junifer McCurdy

Jennifer A McCurdy

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

01-DTSC-007

RMD Environmental - Walnut Creek, CA

TABLE OF CONTENTS

Cp: Cover Page	1			
Tc: Table of Contents	2			
Ss: Sample Summary	3			
Cn: Case Narrative	6			
Ds: Detection Summary	7			
Sr: Sample Results	10			
IAQ-1271-3 L1582384-01	10			
OAA-4 L1582384-02	11			
IAQ-1271-2 L1582384-03	12			
IAQ-1271-1 L1582384-04	13			
IAQ-1271-DUP L1582384-05	14			
IAQ-1281-2 L1582384-06	15			
IAQ-1281-1 L1582384-07	16			
IAQ-1284-3 L1582384-09	17			
IAQ-1284-1 L1582384-10	18			
OAA-5 L1582384-11	19			
IAQ-1276-2 L1582384-12	20			
IAQ-1276-1 L1582384-13	21			
OAA-6 L1582384-14	22			
IAQ-1280-2 L1582384-15	23			
IAQ-1281-3 L1582384-16	24			
IAQ-1280-1 L1582384-17	25			
IAQ-1275-1 L1582384-18	26			
IAQ-1275-3 L1582384-19	27			
Qc: Quality Control Summary	28			
Volatile Organic Compounds (MS) by Method TO-15-SIM	28			
GI: Glossary of Terms				
Al: Accreditations & Locations	33			

Sc: Sample Chain of Custody

34

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	
IAQ-1271-3 L1582384-01 Air			Brendan Englert	02/02/23 08:03	02/04/23 10:	.20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 15:48	02/06/23 15:48	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
OAA-4 L1582384-02 Air			Brendan Englert	02/02/23 08:08	02/04/23 10:	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 16:25	02/06/23 16:25	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
IAQ-1271-2 L1582384-03 Air			Brendan Englert	02/02/23 08:11	02/04/23 10:	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 17:02	02/06/23 17:02	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ta/tima
IAQ-1271-1 L1582384-04 Air			Brendan Englert	02/02/23 08:13	02/04/23 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 17:40	02/06/23 17:40	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
IAQ-1271-DUP L1582384-05 Air			Brendan Englert	02/02/23 08:23	02/04/23 10:	20
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 18:18	02/06/23 18:18	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
IAQ-1281-2 L1582384-06 Air			Brendan Englert	02/02/23 08:44	02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 18:56	02/06/23 18:56	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	to/timo
IAQ-1281-1 L1582384-07 Air			Brendan Englert	02/02/23 09:27	02/04/23 10:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Valatila Organic Compounds (MS) by Mathed TO 15 SIM	WC200097	1	date/time	date/time	DBB	Mt Juliat TN
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	I	02/06/23 19:34	02/06/23 19:34	ממע	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
IAQ-1284-3 L1582384-09 Air			Brendan Englert	02/02/23 09:10	02/04/23 10:	20
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		

RMD Environmental - Walnut Creek, CA

Volatile Organic Compounds (MS) by Method TO-15-SIM

WG2000887

02/06/23 20:12

02/06/23 20:12

DBB

Mt. Juliet, TN

SAMPLE SUMMARY

IAQ-1284-1 L1582384-10 Air			Collected by Brendan Englert	Collected date/time 02/02/23 09:15	Received da 02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 20:50	02/06/23 20:50	DBB	Mt. Juliet, TN
OAA-5 L1582384-11 Air			Collected by Brendan Englert	Collected date/time 02/02/23 09:28	Received da 02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 21:28	02/06/23 21:28	DBB	Mt. Juliet, TN
IAQ-1276-2 L1582384-12 Air			Collected by Brendan Englert	Collected date/time 02/02/23 09:42	Received da 02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 22:06	02/06/23 22:06	DBB	Mt. Juliet, TN
IAQ-1276-1 L1582384-13 Air			Collected by Brendan Englert	Collected date/time 02/02/23 09:45	Received da 02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 22:43	02/06/23 22:43	DBB	Mt. Juliet, TN
OAA-6 L1582384-14 Air			Collected by Brendan Englert	Collected date/time 02/02/23 09:50	Received da 02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 23:21	02/06/23 23:21	DBB	Mt. Juliet, TN
IAQ-1280-2 L1582384-15 Air			Collected by Brendan Englert	Collected date/time 02/02/23 12:16	Received da 02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/06/23 23:58	02/06/23 23:58	DBB	Mt. Juliet, TN
IAQ-1281-3 L1582384-16 Air			Collected by Brendan Englert	Collected date/time 02/02/23 08:45	Received da 02/04/23 10:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2000887	1	02/07/23 00:35	02/07/23 00:35	DBB	Mt. Juliet, TN
IAQ-1280-1 L1582384-17 Air			Collected by Brendan Englert	Collected date/time 02/02/23 12:18	Received da 02/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location

RMD Environmental - Walnut Creek, CA

Volatile Organic Compounds (MS) by Method TO-15-SIM

WG2001306

02/07/23 16:24

02/07/23 16:24

DAH

Mt. Juliet, TN

SAMPLE SUMMARY

IAQ-1275-1 L1582384-18 Air			Collected by Brendan Englert	Collected date/time 02/02/23 14:47	Received da 02/07/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2001306	1	02/07/23 17:04	02/07/23 17:04	DAH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
IAQ-1275-3 L1582384-19 Air			Brendan Englert	02/02/23 14:46	02/07/23 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2001306	1	02/07/23 17:44	02/07/23 17:44	DAH	Mt. Juliet, TN

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jenrifer McCurdy

Jennifer A McCurdy Project Manager

Report Revision History

Level II Report - Version 1: 02/09/23 13:58 Level II Report - Version 2: 02/14/23 12:51

Project Comments

Regenerate to include EDD. JM Revise to correct sample ID per client. 02/16/23 JM

DETECTION SUMMARY

			CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
AQ-1271-3	L1582384-01	Benzene	71-43-2	78.10	0.0200	0.0639	0.263	0.840		1	WG200088
AQ-1271-3	L1582384-01	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0804	0.506		1	WG200088
AQ-1271-3	L1582384-01	Chloroform	67-66-3	119	0.0200	0.0973	0.213	1.04		1	WG200088
AQ-1271-3	L1582384-01	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.653	1.35		1	WG200088
AQ-1271-3	L1582384-01	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0428	0.173		1	WG200088
AQ-1271-3	L1582384-01	Ethylbenzene	100-41-4	106	0.0300	0.130	0.109	0.473		1	WG200088
AQ-1271-3	L1582384-01	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0223	0.151		1	WG200088
DAA-4	L1582384-02	Benzene	71-43-2	78.10	0.0200	0.0639	0.280	0.894		1	WG200088
DAA-4	L1582384-02	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0835	0.526		1	WG200088
DAA-4	L1582384-02	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.564	1.16		1	WG200088
DAA-4	L1582384-02	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0227	0.0919		1	WG200088
DAA-4	L1582384-02	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0757	0.328		1	WG200088
AQ-1271-2	L1582384-03	Benzene	71-43-2	78.10	0.0200	0.0639	0.269	0.859		1	WG200088
AQ-1271-2	L1582384-03	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0820	0.516		1	WG200088
AQ-1271-2	L1582384-03	Chloroform	67-66-3	119	0.0200	0.0973	0.155	0.754		1	WG200088
AQ-1271-2	L1582384-03	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.658	1.36		1	WG200088
AQ-1271-2	L1582384-03	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0505	0.204		1	WG200088
AQ-1271-2	L1582384-03	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0841	0.365		1	WG200088
AQ-1271-2	L1582384-03	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0389	0.264		1	WG200088
AQ-1271-1	L1582384-04	Benzene	71-43-2	78.10	0.0200	0.0639	0.278	0.888		1	WG200088
AQ-1271-1	L1582384-04	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0758	0.477		1	WG200088
AQ-1271-1	L1582384-04	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.634	1.31		1	WG200088
AQ-1271-1	L1582384-04	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0722	0.434		1	WG200088
AQ-1271-1	L1582384-04	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0327	0.132		1	WG200088
AQ-1271-1	L1582384-04	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0901	0.391		1	WG200088
AQ-1271-1	L1582384-04	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0230	0.156		1	WG200088
AQ-1271-DUP	L1582384-05	Benzene	71-43-2	78.10	0.0200	0.0639	0.281	0.898		1	WG200088
AQ-1271-DUP	L1582384-05	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0812	0.511		1	WG200088
AQ-1271-DUP	L1582384-05	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.677	1.40		1	WG200088
AQ-1271-DUP	L1582384-05	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0358	0.145		1	WG200088
AQ-1271-DUP	L1582384-05	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0909	0.394		1	WG200088
AQ-1271-DUI AQ-1271-DUP	L1582384-05	Tetrachloroethylene	127-18-4	166	0.0300	0.136	0.0349	0.334		1	
AQ-1271-DUF AQ-1281-2	L1582384-06	*	71-43-2	78.10	0.0200	0.0639	0.0349	0.805		1	WG2000887
		Benzene Carbon tetrachlorida	56-23-5	154	0.0200	0.0039	0.232	0.535		1	WG2000887
AQ-1281-2	L1582384-06	Carbon tetrachloride								•	WG2000887
AQ-1281-2	L1582384-06	Chloroform	67-66-3	119	0.0200	0.0973	0.112	0.545		1	WG200088
AQ-1281-2	L1582384-06	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.621	1.28		1	WG200088
AQ-1281-2	L1582384-06	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0247	0.149		1	WG200088
AQ-1281-2	L1582384-06	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0827	0.359		1	WG200088
AQ-1281-2	L1582384-06	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0342	0.232		1	WG2000887
AQ-1281-1	L1582384-07	Benzene	71-43-2	78.10	0.0200	0.0639	0.261	0.834		1	WG2000887
AQ-1281-1	L1582384-07	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0809	0.510		1	WG200088
AQ-1281-1	L1582384-07	Chloroform	67-66-3	119	0.0200	0.0973	0.0992	0.483		1	WG200088
AQ-1281-1	<u>L1582384-07</u>	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.599	1.24		1	WG200088
AQ-1281-1	L1582384-07	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0898	0.540		1	WG200088
AQ-1281-1	L1582384-07	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0599	0.260		1	WG200088
AQ-1281-1	L1582384-07	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.141	0.957		1	WG200088
AQ-1281-1	L1582384-07	1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	0.164	0.892		1	WG200088
AQ-1284-3	L1582384-09	Benzene	71-43-2	78.10	0.0200	0.0639	0.333	1.06		1	WG200088
AQ-1284-3	L1582384-09	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0870	0.548		1	WG200088
AQ-1284-3	L1582384-09	Chloroform	67-66-3	119	0.0200	0.0973	0.613	2.98		1	WG200088
AQ-1284-3	L1582384-09	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.828	1.71		1	WG200088
AQ-1284-3	L1582384-09	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.130	0.526		1	WG200088
AQ-1284-3	L1582384-09	Ethylbenzene	100-41-4	106	0.0300	0.130	0.119	0.516		1	WG200088
AQ-1284-3	L1582384-09	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0622	0.422		1	WG200088
AQ-1284-3	L1582384-09	Vinyl acetate	108-05-4	86.10	0.0200	0.0704	0.0407	0.143		1	WG2000887

DETECTION SUMMARY

			CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
IAQ-1284-1	L1582384-10	Benzene	71-43-2	78.10	0.0200	0.0639	0.289	0.923		1	WG2000887
IAQ-1284-1	L1582384-10	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0874	0.550		1	WG2000887
IAQ-1284-1	L1582384-10	Chloroform	67-66-3	119	0.0200	0.0973	0.550	2.68		1	WG2000887
IAQ-1284-1	L1582384-10	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.784	1.62		1	WG2000887
AQ-1284-1	L1582384-10	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0219	0.132		1	WG2000887
IAQ-1284-1	L1582384-10	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.152	0.615		1	WG2000887
AQ-1284-1	L1582384-10	Ethylbenzene	100-41-4	106	0.0300	0.130	0.118	0.512		1	WG2000887
AQ-1284-1	L1582384-10	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0814	0.553		1	WG2000887
AQ-1284-1	L1582384-10	Vinyl acetate	108-05-4	86.10	0.0200	0.0704	0.0307	0.108		1	WG2000887
DAA-5	L1582384-11	Benzene	71-43-2	78.10	0.0200	0.0639	0.261	0.834		1	WG2000887
DAA-5	L1582384-11	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0803	0.506		1	WG2000887
DAA-5	L1582384-11	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.525	1.08		1	WG2000887
DAA-5	L1582384-11	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0204	0.0826		1	WG2000887
DAA-5	L1582384-11	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0755	0.327		1	WG2000887
AQ-1276-2	L1582384-12	Benzene	71-43-2	78.10	0.0200	0.0639	0.311	0.993		1	WG2000887
AQ-1276-2	L1582384-12	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0797	0.502		1	WG200088
AQ-1276-2	L1582384-12	Chloroform	67-66-3	119	0.0200	0.0973	0.539	2.62		1	WG200088
AQ-1276-2	L1582384-12	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.773	1.60		1	WG200088
AQ-1276-2	L1582384-12	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0431	0.175		1	WG200088
AQ-1276-2	L1582384-12	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0961	0.417		1	WG200088
AQ-1276-2	L1582384-12	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0269	0.183		1	WG200088
AQ-1276-1	L1582384-13	Benzene	71-43-2	78.10	0.0200	0.0639	0.278	0.888		1	WG2000887
AQ-1276-1	L1582384-13	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0839	0.528		1	WG2000887
AQ-1276-1	L1582384-13	Chloroform	67-66-3	119	0.0200	0.0973	0.163	0.793		1	WG2000887
AQ-1276-1	L1582384-13	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.684	1.41		1	WG2000887
AQ-1276-1	L1582384-13	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0446	0.181		1	WG2000887
AQ-1276-1	L1582384-13	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0844	0.366		1	WG200088
AQ-1276-1	L1582384-13	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0326	0.221		1	WG200088
DAA-6	L1582384-14	Benzene	71-43-2	78.10	0.0200	0.0639	0.290	0.926		1	WG200088
DAA-6	L1582384-14	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0806	0.508		1	WG2000887
DAA-6	L1582384-14	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.540	1.12		1	WG200088
DAA-6	L1582384-14	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0785	0.340		1	WG2000887
AQ-1280-2	L1582384-15	Benzene	71-43-2	78.10	0.0200	0.0639	0.288	0.920		1	WG2000887
AQ-1280-2	L1582384-15	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0877	0.552		1	WG2000887
AQ-1280-2	L1582384-15	Chloroform	67-66-3	119	0.0200	0.0973	0.523	2.55		1	WG200088
AQ-1280-2	L1582384-15	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.664	1.37		1	WG2000887
AQ-1280-2	L1582384-15	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0422	0.254		1	WG2000887
AQ-1280-2	L1582384-15	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0321	0.130		1	WG2000887
AQ-1280-2 AQ-1280-2	L1582384-15	Ethylbenzene	100-41-4	106	0.0300	0.0010	0.0989	0.429		1	WG2000887
AQ-1280-2	L1582384-15	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0510	0.346		1	WG2000887
AQ-1280-2 AQ-1281-3	L1582384-16	Benzene	71-43-2	78.10	0.0200	0.0639	0.269	0.859		1	WG2000887
AQ-1281-3 AQ-1281-3	L1582384-16	Carbon tetrachloride	56-23-5	154	0.0200	0.0039	0.209	0.495		1	WG2000887
AQ-1281-3 AQ-1281-3	L1582384-16	Chloroform	67-66-3	119	0.0200	0.0973	0.0780	0.493		1	WG2000887
AQ-1281-3 AQ-1281-3	L1582384-16	Chloromethane	74-87-3	50.50	0.0200	0.0973	0.103	1.27		1	WG2000887
AQ-1281-3 AQ-1281-3	L1582384-16	1,4-Dichlorobenzene	106-46-7	50.50 147	0.0300	0.0620	0.0965	0.580		1	WG2000887
AQ-1281-3 AQ-1281-3	L1582384-16	1,2-Dichloroethane	107-06-2	99	0.0200	0.120	0.0965	0.560		1	WG2000887
					0.0200		0.0255			1	
AQ-1281-3	L1582384-16 L1582384-16	Ethylbenzene Tetrachloroethylene	100-41-4 127-18-4	106 166	0.0300	0.130 0.136	0.0554	0.240 0.998		1	WG2000887 WG2000887
AQ-1281-3						11.130					WIND ALTERIAN

DETECTION SUMMARY

			CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
IAQ-1280-1	L1582384-17	Benzene	71-43-2	78.10	0.0200	0.0639	0.255	0.815		1	WG2001306
IAQ-1280-1	L1582384-17	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0728	0.459		1	WG2001306
IAQ-1280-1	L1582384-17	Chloroform	67-66-3	119	0.0200	0.0973	0.315	1.53		1	WG2001306
IAQ-1280-1	L1582384-17	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.634	1.31		1	WG2001306
IAQ-1280-1	L1582384-17	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0532	0.320		1	WG2001306
IAQ-1280-1	L1582384-17	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0551	0.223		1	WG2001306
IAQ-1280-1	L1582384-17	Ethylbenzene	100-41-4	106	0.0300	0.130	0.136	0.590		1	WG2001306
IAQ-1280-1	L1582384-17	1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	0.0613	0.421		1	WG2001306
IAQ-1280-1	L1582384-17	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0796	0.540		1	WG2001306
IAQ-1275-1	L1582384-18	Benzene	71-43-2	78.10	0.0200	0.0639	0.321	1.03		1	WG2001306
IAQ-1275-1	L1582384-18	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0723	0.455		1	WG2001306
IAQ-1275-1	L1582384-18	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.632	1.31		1	WG2001306
IAQ-1275-1	L1582384-18	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0250	0.101		1	WG2001306
IAQ-1275-1	L1582384-18	Ethylbenzene	100-41-4	106	0.0300	0.130	0.110	0.477		1	WG2001306
IAQ-1275-1	L1582384-18	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0317	0.215		1	WG2001306
IAQ-1275-3	L1582384-19	Benzene	71-43-2	78.10	0.0200	0.0639	0.357	1.14		1	WG2001306
IAQ-1275-3	L1582384-19	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0715	0.450		1	WG2001306
IAQ-1275-3	L1582384-19	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.599	1.24		1	WG2001306
IAQ-1275-3	L1582384-19	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0245	0.0992		1	WG2001306
IAQ-1275-3	L1582384-19	Ethylbenzene	100-41-4	106	0.0300	0.130	0.124	0.538		1	WG2001306
IAQ-1275-3	L1582384-19	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0331	0.225		1	WG2001306

SAMPLE RESULTS - 01

Collected date/time: 02/02/23 08:03

60.0-140

175

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.263	0.840		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0804	0.506		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.213	1.04		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.653	1.35		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0428	0.173		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.109	0.473		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0223	0.151		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

100

SAMPLE RESULTS - 02

Collected date/time: 02/02/23 08:08

(S) 1,4-Bromofluorobenzene 460-00-4

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.280	0.894		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0835	0.526		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.564	1.16		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0227	0.0919		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0757	0.328		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	ND	ND		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

96.5

60.0-140

175

SAMPLE RESULTS - 03

Collected date/time: 02/02/23 08:11

60.0-140

175

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.269	0.859		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0820	0.516		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.155	0.754		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.658	1.36		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0505	0.204		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0841	0.365		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0389	0.264		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

99.6

SAMPLE RESULTS - 04

Collected date/time: 02/02/23 08:13

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.278	0.888		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0758	0.477		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.634	1.31		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0722	0.434		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0327	0.132		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0901	0.391		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0230	0.156		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		98.2				WG2000887

Collected date/time: 02/02/23 08:23

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 05

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.281	0.898		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0812	0.511		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.677	1.40		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0358	0.145		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0909	0.394		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0349	0.237		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

94.2

60.0-140

175

SAMPLE RESULTS - 06

Collected date/time: 02/02/23 08:44

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.252	0.805		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0849	0.535		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.112	0.545		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.621	1.28		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0247	0.149		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0827	0.359		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0342	0.232		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

97.4

60.0-140

175

SAMPLE RESULTS - 07

Collected date/time: 02/02/23 09:27

L1582384

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.261	0.834		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0809	0.510		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.0992	0.483		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.599	1.24		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0898	0.540		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0599	0.260		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.141	0.957		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	0.164	0.892		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

98.2

60.0-140

175

SAMPLE RESULTS - 09

Collected date/time: 02/02/23 09:10

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.333	1.06		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0870	0.548		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.613	2.98		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.828	1.71		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.130	0.526		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.119	0.516		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0622	0.422		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	0.0407	0.143		1	WG2000887
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG2000887

Collected date/time: 02/02/23 09:15

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 10

L1582384

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.289	0.923		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0874	0.550		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.550	2.68		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.784	1.62		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0219	0.132		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.152	0.615		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.118	0.512		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0814	0.553		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	0.0307	0.108		1	WG2000887

103

60.0-140

175

SAMPLE RESULTS - 11

Collected date/time: 02/02/23 09:28

(S) 1,4-Bromofluorobenzene 460-00-4

L1582384

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.261	0.834		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0803	0.506		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.525	1.08		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0204	0.0826		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0755	0.327		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	ND	ND		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

99.0

60.0-140

175

SAMPLE RESULTS - 12

Collected date/time: 02/02/23 09:42

60.0-140

175

Volatile Organic Compounds (MS) by Method TO-15-SIM

	•								
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.311	0.993		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0797	0.502		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.539	2.62		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.773	1.60		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0431	0.175		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0961	0.417		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0269	0.183		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

101

SAMPLE RESULTS - 13

Collected date/time: 02/02/23 09:45

Volatile Organic Compounds (MS) by Method TO-15-SIM

175

60.0-140

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.278	0.888		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0839	0.528		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.163	0.793		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.684	1.41		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0446	0.181		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0844	0.366		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0326	0.221		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

100

Collected date/time: 02/02/23 09:50

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 14

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.290	0.926		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0806	0.508		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.540	1.12		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0785	0.340		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	ND	ND		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

95.1

60.0-140

175

SAMPLE RESULTS - 15

L1582384

Collected date/time: 02/02/23 12:16

(S) 1,4-Bromofluorobenzene 460-00-4

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.288	0.920		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0877	0.552		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.523	2.55		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.664	1.37		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0422	0.254		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0321	0.130		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0989	0.429		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0510	0.346		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

98.7

60.0-140

175

Collected date/time: 02/02/23 08:45

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 16

L1582384

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.269	0.859		1	WG2000887
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0786	0.495		1	WG2000887
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2000887
Chloroform	67-66-3	119	0.0200	0.0973	0.103	0.501		1	WG2000887
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.615	1.27		1	WG2000887
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2000887
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0965	0.580		1	WG2000887
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2000887
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0255	0.103		1	WG2000887
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2000887
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2000887
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2000887
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2000887
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2000887
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2000887
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0554	0.240		1	WG2000887
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2000887
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.147	0.998		1	WG2000887
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	0.167	0.908		1	WG2000887
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2000887
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2000887
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2000887
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2000887

95.0

60.0-140

175

Collected date/time: 02/02/23 12:18

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 17

L1582384

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.255	0.815		1	WG2001306
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0728	0.459		1	WG2001306
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2001306
Chloroform	67-66-3	119	0.0200	0.0973	0.315	1.53		1	WG2001306
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.634	1.31		1	WG2001306
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2001306
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0532	0.320		1	WG2001306
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2001306
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0551	0.223		1	WG2001306
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2001306
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2001306
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2001306
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2001306
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2001306
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2001306
Ethylbenzene	100-41-4	106	0.0300	0.130	0.136	0.590		1	WG2001306
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	0.0613	0.421		1	WG2001306
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0796	0.540		1	WG2001306
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2001306
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2001306
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2001306
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2001306
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2001306

118

60.0-140

175

SAMPLE RESULTS - 18

Collected date/time: 02/02/23 14:47

60.0-140

175

Volatile Organic Compounds (MS) by Method TO-15-SIM

	•	, , ,							
	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.321	1.03		1	WG2001306
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0723	0.455		1	WG2001306
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2001306
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2001306
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.632	1.31		1	WG2001306
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2001306
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2001306
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2001306
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0250	0.101		1	WG2001306
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2001306
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2001306
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2001306
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2001306
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2001306
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2001306
Ethylbenzene	100-41-4	106	0.0300	0.130	0.110	0.477		1	WG2001306
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2001306
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0317	0.215		1	WG2001306
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2001306
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2001306
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2001306
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2001306
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2001306

104

SAMPLE RESULTS - 19

Collected date/time: 02/02/23 14:46

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.357	1.14		1	WG2001306
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0715	0.450		1	WG2001306
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2001306
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2001306
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.599	1.24		1	WG2001306
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2001306
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2001306
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2001306
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0245	0.0992		1	WG2001306
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2001306
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2001306
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2001306
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2001306
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2001306
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2001306
Ethylbenzene	100-41-4	106	0.0300	0.130	0.124	0.538		1	WG2001306
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2001306
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0331	0.225		1	WG2001306
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2001306
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2001306
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2001306
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2001306
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2001306
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		105				WG2001306

WG2000887

QUALITY CONTROL SUMMARY

L1582384-01,02,03,04,05,06,07,09,10,11,12,13,14,15,16

Method Blank (MB)

(S) 1,4-Bromofluorobenzene

Volatile Organic Compounds (MS) by Method TO-15-SIM

(MB) R3888077-3 02/06/23 11:22 MB Result MB Qualifier MB MDL MB RDL Analyte ppbv ppbv ppbv Benzene U 0.0112 0.0200 U 0.00995 0.0200 Carbon tetrachloride Ss Chloroethane U 0.00944 0.0400 U 0.00729 0.0200 Chloroform Chloromethane U 0.0162 0.0300 U 0.00779 0.0200 1,2-Dibromoethane 1,4-Dichlorobenzene U 0.00691 0.0200 1,1-Dichloroethane U 0.00893 0.0200 1,2-Dichloroethane U 0.000471 0.0200 Sr U 1,1-Dichloroethene 0.00921 0.0200 0.0142 0.0200 cis-1,2-Dichloroethene U U 0.00499 trans-1,2-Dichloroethene 0.0200 1,2-Dichloropropane U 0.00885 0.0300 U 0.00735 cis-1,3-Dichloropropene 0.0200 trans-1,3-Dichloropropene U 0.00711 0.0300 Ethylbenzene U 0.0126 0.0300 U 0.00874 0.0200 1,1,2,2-Tetrachloroethane Tetrachloroethylene 0.0127 0.0200 0.00649 0.0200 1,1,1-Trichloroethane U Sc 1,1,2-Trichloroethane 0.00583 0.0300 U 0.00746 0.0200 Trichloroethylene Vinyl chloride U 0.00765 0.0200 Vinyl acetate U 0.0111 0.0200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

60.0-140

PROJECT:

(LCS) R3888077-1 02/06/23 10:05 • (LCSD) R3888077-2 02/06/23 10:45

92.9

ACCOUNT:

(ECS) 1(3000077 1 0270	0/23 10.03 - (LCC	D) 113000077	2 02/00/25 10	.75							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzene	0.500	0.592	0.567	118	113	70.0-130			4.31	25	
Carbon tetrachloride	0.500	0.569	0.565	114	113	70.0-130			0.705	25	
Chloroethane	0.500	0.505	0.522	101	104	70.0-130			3.31	25	
Chloroform	0.500	0.489	0.496	97.8	99.2	70.0-130			1.42	25	
nloromethane	0.500	0.511	0.510	102	102	70.0-130			0.196	25	
2-Dibromoethane	0.500	0.626	0.547	125	109	70.0-130			13.5	25	
4-Dichlorobenzene	0.500	0.576	0.583	115	117	70.0-130			1.21	25	
1-Dichloroethane	0.500	0.499	0.490	99.8	98.0	70.0-130			1.82	25	
1,2-Dichloroethane	0.500	0.491	0.489	98.2	97.8	70.0-130			0.408	25	

Cn

Ds

Qc

Ğl

ΆΙ

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1582384-01,02,03,04,05,06,07,09,10,11,12,13,14,15,16

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3888077-1 02/06/23 10:05 • (LCSD) R3888077-2 02/06/23 10:45

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,1-Dichloroethene	0.500	0.514	0.506	103	101	70.0-130			1.57	25
cis-1,2-Dichloroethene	0.500	0.470	0.510	94.0	102	70.0-130			8.16	25
trans-1,2-Dichloroethene	0.500	0.501	0.502	100	100	70.0-130			0.199	25
1,2-Dichloropropane	0.500	0.506	0.503	101	101	70.0-130			0.595	25
cis-1,3-Dichloropropene	0.500	0.523	0.614	105	123	70.0-130			16.0	25
trans-1,3-Dichloropropene	0.500	0.485	0.482	97.0	96.4	70.0-130			0.620	25
Ethylbenzene	0.500	0.489	0.488	97.8	97.6	70.0-130			0.205	25
1,1,2,2-Tetrachloroethane	0.500	0.552	0.547	110	109	70.0-130			0.910	25
Tetrachloroethylene	0.500	0.543	0.535	109	107	70.0-130			1.48	25
1,1,1-Trichloroethane	0.500	0.497	0.492	99.4	98.4	70.0-130			1.01	25
1,1,2-Trichloroethane	0.500	0.543	0.523	109	105	70.0-130			3.75	25
Trichloroethylene	0.500	0.559	0.626	112	125	70.0-130			11.3	25
Vinyl chloride	0.500	0.563	0.541	113	108	70.0-130			3.99	25
Vinyl acetate	0.500	0.520	0.510	104	102	70.0-130			1.94	25
(S) 1,4-Bromofluorobenzene				99.1	98.5	60.0-140				

QUALITY CONTROL SUMMARY

L1582384-17,18,19

Volatile Organic Compounds (MS) by Method TO-15-SIM

Method Blank (MB)

(MB) R3888497-3 02/07/	23 10:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	ī
Analyte	ppbv		ppbv	ppbv	1
Benzene	U		0.0112	0.0200	Ļ
Carbon tetrachloride	U		0.00995	0.0200	-
Chloroethane	U		0.00944	0.0400	L
Chloroform	U		0.00729	0.0200	Г
Chloromethane	U		0.0162	0.0300	
1,2-Dibromoethane	U		0.00779	0.0200	L
1,4-Dichlorobenzene	U		0.00691	0.0200	
1,1-Dichloroethane	U		0.00893	0.0200	L
1,2-Dichloroethane	U		0.000471	0.0200	Г
1,1-Dichloroethene	U		0.00921	0.0200	
cis-1,2-Dichloroethene	U		0.0142	0.0200	L
trans-1,2-Dichloroethene	U		0.00499	0.0200	
1,2-Dichloropropane	U		0.00885	0.0300	
cis-1,3-Dichloropropene	U		0.00735	0.0200	Г
trans-1,3-Dichloropropene	U		0.00711	0.0300	
Ethylbenzene	U		0.0126	0.0300	L
1,1,2,2-Tetrachloroethane	U		0.00874	0.0200	
Tetrachloroethylene	U		0.0127	0.0200	
1,1,1-Trichloroethane	U		0.00649	0.0200	Г
1,1,2-Trichloroethane	U		0.00583	0.0300	
Trichloroethylene	U		0.00746	0.0200	L
Vinyl chloride	U		0.00765	0.0200	
Vinyl acetate	U		0.0111	0.0200	
(S) 1,4-Bromofluorobenzene	94.3			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3888497-1	02/07/23 09:31 • ((LCSD) R3888497-2	02/07/23 10:12
------	--------------	--------------------	-------	--------------	----------------

(LCS) NS000+37-1 02/01	7/25 05.51 • (LCS	D) N3000+37	-2 02/07/25 10	.12						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Benzene	0.500	0.469	0.467	93.8	93.4	70.0-130			0.427	25
Carbon tetrachloride	0.500	0.491	0.507	98.2	101	70.0-130			3.21	25
Chloroethane	0.500	0.482	0.476	96.4	95.2	70.0-130			1.25	25
Chloroform	0.500	0.493	0.489	98.6	97.8	70.0-130			0.815	25
Chloromethane	0.500	0.470	0.464	94.0	92.8	70.0-130			1.28	25
1,2-Dibromoethane	0.500	0.488	0.477	97.6	95.4	70.0-130			2.28	25
1,4-Dichlorobenzene	0.500	0.535	0.529	107	106	70.0-130			1.13	25
1,1-Dichloroethane	0.500	0.492	0.488	98.4	97.6	70.0-130			0.816	25
1,2-Dichloroethane	0.500	0.516	0.494	103	98.8	70.0-130			4.36	25

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1582384-17,18,19

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3888497-1 02/07/23 09:31 • (LCSD) R3888497-2 02/07/23 10:12

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,1-Dichloroethene	0.500	0.486	0.481	97.2	96.2	70.0-130			1.03	25
cis-1,2-Dichloroethene	0.500	0.481	0.480	96.2	96.0	70.0-130			0.208	25
trans-1,2-Dichloroethene	0.500	0.491	0.486	98.2	97.2	70.0-130			1.02	25
1,2-Dichloropropane	0.500	0.501	0.493	100	98.6	70.0-130			1.61	25
cis-1,3-Dichloropropene	0.500	0.479	0.475	95.8	95.0	70.0-130			0.839	25
trans-1,3-Dichloropropene	0.500	0.483	0.473	96.6	94.6	70.0-130			2.09	25
Ethylbenzene	0.500	0.512	0.504	102	101	70.0-130			1.57	25
1,1,2,2-Tetrachloroethane	0.500	0.502	0.499	100	99.8	70.0-130			0.599	25
Tetrachloroethylene	0.500	0.498	0.486	99.6	97.2	70.0-130			2.44	25
1,1,1-Trichloroethane	0.500	0.489	0.484	97.8	96.8	70.0-130			1.03	25
1,1,2-Trichloroethane	0.500	0.492	0.482	98.4	96.4	70.0-130			2.05	25
Trichloroethylene	0.500	0.488	0.483	97.6	96.6	70.0-130			1.03	25
Vinyl chloride	0.500	0.490	0.493	98.0	98.6	70.0-130			0.610	25
Vinyl acetate	0.500	0.489	0.478	97.8	95.6	70.0-130			2.28	25
(S) 1,4-Bromofluorobenzene	1			102	101	60.0-140				

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

,			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address: RMD Environmental - V	Walnut Creek	, CA			Accour	formation: nts Payable akland Bly					Ana	alysis	Chain of Cust	ody Page _of _	
1371 Oakland Blvd. Suite 200	and the same of th				Suite 200 Walnut Creek, CA 94596									PACE* OPLE ADVANCING SCIENCE F JULIET, TN Road Mt Juliet, TN 37122	
Report To: Erin Male		F 16 1		207	Email To: inouye@rmdes.net;emale@rmdes.net								Phone: 615-758- Submitting a sa constitutes acks of the Pace Ten	5858 Ali: 800-767-5859 imple via this chain of custody nowledgment and acceptance ms and Conditions found at:	
Project Police Credit Union Description: City/State Collected: 5				ed: 60	Franci	isco, C.	A		Please Circle: PMT CT ET				https://info.pacelabs.com/hubfs/pas- standard-terms.pdf		
Phone: 415-571-6627	Client Project # 01-DTSC-007				RMDE		A-01DTSC	007		Summa			K100		
Collected by (print): Breadon Eblert	Site/Facility ID #				P.O. #					HELIUM Sun	Summa		Acctnum: RMDENVPHCA Template: T204372		
Collected by (signature):	Same Day	Rush? (Lab MUST Be Notified) Same Day Three Day Next Day Five Day				Date Results Needed Standard FAT					TO-15SIM Sur	Q.	Prelogin: P968419 PM: 3828 - Jennifer A McCurdy PB: Choloshis		
		1			- L	Collecti	ion	Canister P	Pressure/Vacuum	0-1	ò	HOL		FedEX Ground	
Sample ID	Can #	18	Flow Cor	nt.#	Da	ate	Time	Initial	Final	-		I	Rem./Contam		
[AQ-127 -3	10983		22735		02/02	थ्य ८	1883	727	-\$		1			-01	
0AA - 4	ורגוו		22/75	-201		e	808	-29	-5		1			-02	
IAQ-1271-2	12128		6765			C	28 41	- 30	0		1		Art S	-03	
5AQ-1271-1	8039		6359	ž - 19.	Section 1		2000 PO 213	-28	-2		1	No.		-04	
IAQ - 1271 - DUP	10816		22747	5		(0813	-30	-8		1			-05	
IAQ-1281-2	7937		6447	i xi		4	M805250	- 29	-5		1			-00	
IAQ-1281-1	7943		11796				०१ २१	-30	-5		J			-07	
IAQ-1281-2	@HISTE S	8008	@ 4450	358	- 1	C	2843	-28	-22		1	1		-06	
IAQ-1284-3	6567		6330			9	9 20	-29	-5		1			-09	
1-M851-0AZ	11159		21275	5	1		क्षा १००० १०००	-30			J			-10	
Remarks:						imples return	ned via: dEx X Courie		Tracking #			Hold	#		
Relinquished by : (Signature) Date: 11 12 13 14 15 16 16 16 16 16 16 16			ime:	Received by: (Signature)				Date:				Condition: (lab use only)			
Relinquished by : (Signature)				ime:	Received by: (Signature)				Date:	Date: Time:			COC Seal Intact:YNNA		
Relinquished by : (Signature) Date:		ī	ime;	Re	eceived for k	ab by: (Signatur	e)	Date:	Time:	משנ	NCF:				

Company Name/Address:	3. 1. N. 2. T				Billing Info	rmation:			J. 1	Ana	alysis	Chain of Cus	tody Page 2 of 2	
RMD Environmental -	Walnut Cree	k, CA				s Payable kland Blvd.			side!			1	2	
1371 Oakland Blvd.					Suite 200							1	ace	
Suite 200					Walnut C	Creek, CA 94596					M	OPLE ADVANCING SCIENCE T JULIET, TN Road Mt Juliet, TN 37122		
Report To: Erin Male					Email To: linouye@rn	ndes.net;emale@rmdes.					Phone: 615-758- Submitting a sa constitutes ack	5858 Alt 800-767-5859 imple via this chain of custody nowledgment and acceptance ms and Conditions found at:		
Project Police Credit Union Description:			City/Si Collect	tate ted:	on fr	noiseo, CA	Please Circle:				https://info.pac standard-terms	relabs.com/hubfs/pas-		
Phone:	Client Project #				Lab Projec						1	SDG #	006009	
415-571-6627	01-DTSC-	007			RMDE	NVPHCA-01DT	SC007		Summa			Table #		
Collected by (print): Brendan Endert	Endert							477		umma		Acctnum:	RMDENVPHC	
Collected by (signature): Rush? (Lab MUST Be Notified)						Da	te Results Needed			Sun		Template:	T204372	
Amylly		5	TO-15, HELIUM	5SIM S		PM: 3828	P968419 - Jennifer A McCurdy							
	Two Da		- 15	2	Collection Canister Pressure/Vacuum					0-1		- 22	01/03/13	
Sample ID	Can	#	Flow Co	nt. #	Date	Time	Initial	Final	F	D		Rem./Contam	FedEX Ground	
OAA-6	10849		धार्	,	25/01	23 10000000	8 - 29	-5		1		Nem./Contam	inant Sample # (lab only)	
IAQ-1276-2	21528		2271	ר	काज्य	100	A STATE OF THE PARTY OF THE PAR	-5		1			-17	
JAQ-1276-1	11063		านาน			18 23091		-8		1			13	
0AA-6	10 44	3	2274	2		3000	50 - 29	-3		1			-14	
IAQ-120-2	1084	6	5888	3		12	16 - 29	-8		J			-15	
[AQ-1280-]	2113		2274	1		21012	R -30	0		1				
IAQ-1281-3	1105	2	9450	2	+	0845	-30	-5		5			-110	
1AQ-275-2	11062		5320		1	14 45	-30	-6		5		A		
IAQ-1275-1	12415		27810	4	B	14 47	-29	-5		5,		24 - 27		
[AQ-1275-3	10870		509-	1	1	14 46	-30	-5		1		7		
Remarks:				- 1										
						eles returned via:	rier	Tracking #			Hold #			
Relinquished by : (Signature)			ime:		ived by: (Signature	4.	Date:	Date: Time:				ab use only)		
Relinquished by : (Signature)		Date:	ī	ime:	Rece	ived by: (Signature		Date:	Time:					
Relinquished by : (Signature) Date: Time:		Date:	z T	ime:	Rece	ived for lab by: (Sena	ture)	Date:				COC Seal Intact: Y N NA NCF:		

Pace Analytical® ANALYTICAL REPORT

February 21, 2023

RMD Environmental - Walnut Creek, CA

Sample Delivery Group: L1587242

Samples Received: 02/18/2023

Project Number: 01-DTSC-007

Description: Police Credit Union

Report To: Ivy Inouye

1371 Oakland Blvd.

Suite 200

Walnut Creek, CA 94596

Entire Report Reviewed By: Junifer McCurdy

Jennifer A McCurdy

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT:

Ss

Cn

Ds

Śr

Qc

Ğl

Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Ds: Detection Summary	5
Sr: Sample Results	6
IAQ-1284-1 L1587242-01	6
IAQ-1284-2 L1587242-02	7
OAA-5 L1587242-03	8
IAQ-1275-1 L1587242-04	9
IAQ-1275-2 L1587242-05	10
IAQ-1275-3 L1587242-06	11
Qc: Quality Control Summary	12
Volatile Organic Compounds (MS) by Method TO-15-SIM	12
GI: Glossary of Terms	16
Al: Accreditations & Locations	17
Sc: Sample Chain of Custody	18

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
IAQ-1284-1 L1587242-01 Air				02/17/23 16:10	02/18/23 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2009318	1	02/20/23 16:53	02/20/23 16:53	DBB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
IAQ-1284-2 L1587242-02 Air				02/17/23 14:05	02/18/23 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2008837	1	02/19/23 23:26	02/19/23 23:26	CEP	Mt. Juliet, TN
OAA-5 L1587242-03 Air			Collected by	Collected date/time 02/17/23 13:39	Received da 02/18/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2008837	1	02/20/23 00:07	02/20/23 00:07	CEP	Mt. Juliet, TN
IAQ-1275-1 L1587242-04 Air			Collected by	Collected date/time 02/17/23 14:34	Received da 02/18/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2008837	1	02/20/23 00:47	02/20/23 00:47	CEP	Mt. Juliet, TN
IAQ-1275-2 L1587242-05 Air			Collected by	Collected date/time 02/17/23 14:54	Received da 02/18/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Volatile Organic Compounds (MS) by Method TO-15-SIM Volatile Organic Compounds (MS) by Method TO-15-SIM	WG2008837 WG2009318	1 10	02/20/23 01:27 02/20/23 15:01	02/20/23 01:27 02/20/23 15:01	CEP DBB	Mt. Juliet, TN Mt. Juliet, TN
IAQ-1275-3 L1587242-06 Air			Collected by	Collected date/time 02/17/23 16:00	Received da 02/18/23 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

Volatile Organic Compounds (MS) by Method TO-15-SIM

WG2008837

date/time

02/20/23 02:09

date/time

02/20/23 02:09

CEP

Mt. Juliet, TN

CASE NARRATIVE

Unless qualified or notated within the narrative below, all sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jenrifer McCurdy

Jennifer A McCurdy Project Manager

PAGE:

4 of 21

DETECTION SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

			CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilutio n	Batch
Client ID	Lab Sample ID	Analyte			ppbv	ug/m3	ppbv	ug/m3			
IAQ-1284-1	L1587242-01	Benzene	71-43-2	78.10	0.0200	0.0639	0.231	0.738		1	WG2009318
AQ-1284-1	L1587242-01	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0789	0.497		1	WG2009318
AQ-1284-1	L1587242-01	Chloroform	67-66-3	119	0.0200	0.0973	0.450	2.19		1	WG2009318
AQ-1284-1	L1587242-01	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.921	1.90		1	WG2009318
AQ-1284-1	L1587242-01	1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0200	0.120		1	WG2009318
AQ-1284-1	L1587242-01	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.202	0.818		1	WG2009318
AQ-1284-1	L1587242-01	Ethylbenzene	100-41-4	106	0.0300	0.130	0.113	0.490		1	WG2009318
AQ-1284-1	L1587242-01	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.114	0.774		1	WG2009318
AQ-1284-2	L1587242-02	Benzene	71-43-2	78.10	0.0200	0.0639	0.205	0.655		1	WG2008837
AQ-1284-2	L1587242-02	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0791	0.498		1	WG2008837
AQ-1284-2	L1587242-02	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.829	1.71		1	WG2008837
AQ-1284-2	L1587242-02	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0703	0.285		1	WG2008837
AQ-1284-2	L1587242-02	Ethylbenzene	100-41-4	106	0.0300	0.130	0.181	0.785		1	WG2008837
AQ-1284-2	L1587242-02	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0646	0.439		1	WG2008837
AQ-1284-2	L1587242-02	Vinyl acetate	108-05-4	86.10	0.0200	0.0704	0.0250	0.0880		1	WG2008837
DAA-5	L1587242-03	Benzene	71-43-2	78.10	0.0200	0.0639	0.211	0.674		1	WG2008837
DAA-5	L1587242-03	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0762	0.480		1	WG2008837
DAA-5	L1587242-03	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.614	1.27		1	WG2008837
DAA-5	L1587242-03	Ethylbenzene	100-41-4	106	0.0300	0.130	0.0490	0.212		1	WG2008837
AQ-1275-1	L1587242-04	Benzene	71-43-2	78.10	0.0200	0.0639	0.396	1.26		1	WG2008837
AQ-1275-1	L1587242-04	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0769	0.484		1	WG2008837
AQ-1275-1	L1587242-04	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.719	1.49		1	WG2008837
AQ-1275-1	L1587242-04	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0273	0.111		1	WG2008837
AQ-1275-1	L1587242-04	Ethylbenzene	100-41-4	106	0.0300	0.130	0.178	0.772		1	WG2008837
AQ-1275-1	L1587242-04	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0406	0.276		1	WG2008837
AQ-1275-2	L1587242-05	Benzene	71-43-2	78.10	0.0200	0.0639	0.357	1.14		1	WG2008837
AQ-1275-2	L1587242-05	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0760	0.479		1	WG2008837
AQ-1275-2	L1587242-05	Chloroform	67-66-3	119	0.200	0.973	24.9	121		10	WG2009318
AQ-1275-2	L1587242-05	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.839	1.73		1	WG2008837
AQ-1275-2	L1587242-05	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0835	0.338		1	WG2008837
AQ-1275-2	L1587242-05	Ethylbenzene	100-41-4	106	0.0300	0.130	0.148	0.642		1	WG2008837
AQ-1275-2	L1587242-05	Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.164	1.11		1	WG2008837
AQ-1275-3	L1587242-06	Benzene	71-43-2	78.10	0.0200	0.0639	0.415	1.33		1	WG2008837
AQ-1275-3	L1587242-06	Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0750	0.472		1	WG2008837
AQ-1275-3	L1587242-06	Chloromethane	74-87-3	50.50	0.0300	0.0620	0.663	1.37		1	WG2008837
AQ-1275-3	L1587242-06	1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0267	0.108		1	WG2008837
AQ-1275-3	L1587242-06	Ethylbenzene	100-41-4	106	0.0300	0.130	0.165	0.715		1	WG2008837

L1587242-06

Tetrachloroethylene

127-18-4

166

0.0200

0.136

0.0371

0.252

IAQ-1275-3

WG2008837

Collected date/time: 02/17/23 16:10

(S) 1,4-Bromofluorobenzene 460-00-4

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.231	0.738		1	WG2009318
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0789	0.497		1	WG2009318
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2009318
Chloroform	67-66-3	119	0.0200	0.0973	0.450	2.19		1	WG2009318
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.921	1.90		1	WG2009318
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2009318
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	0.0200	0.120		1	WG2009318
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2009318
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.202	0.818		1	WG2009318
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2009318
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2009318
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2009318
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2009318
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2009318
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2009318
Ethylbenzene	100-41-4	106	0.0300	0.130	0.113	0.490		1	WG2009318
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2009318
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.114	0.774		1	WG2009318
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2009318
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2009318
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2009318
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2009318
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2009318

119

60.0-140

175

WG2009318

Collected date/time: 02/17/23 14:05

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.205	0.655		1	WG2008837
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0791	0.498		1	WG2008837
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2008837
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2008837
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.829	1.71		1	WG2008837
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2008837
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2008837
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2008837
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0703	0.285		1	WG2008837
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2008837
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2008837
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2008837
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2008837
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2008837
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2008837
Ethylbenzene	100-41-4	106	0.0300	0.130	0.181	0.785		1	WG2008837
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2008837
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0646	0.439		1	WG2008837
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2008837
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2008837
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2008837
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2008837
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	0.0250	0.0880		1	WG2008837
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		111				WG2008837

Collected date/time: 02/17/23 13:39

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	<u>Batch</u>
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.211	0.674		1	WG2008837
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0762	0.480		1	WG2008837
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2008837
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2008837
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.614	1.27		1	WG2008837
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2008837
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2008837
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2008837
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	ND	ND		1	WG2008837
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2008837
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2008837
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2008837
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2008837
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2008837
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2008837
Ethylbenzene	100-41-4	106	0.0300	0.130	0.0490	0.212		1	WG2008837
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2008837
Tetrachloroethylene	127-18-4	166	0.0200	0.136	ND	ND		1	WG2008837
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2008837
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2008837
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2008837
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2008837
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2008837
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		104				WG2008837

Collected date/time: 02/17/23 14:34

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS#	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.396	1.26		1	WG2008837
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0769	0.484		1	WG2008837
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2008837
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2008837
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.719	1.49		1	WG2008837
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2008837
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2008837
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2008837
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0273	0.111		1	WG2008837
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2008837
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2008837
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2008837
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2008837
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2008837
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2008837
Ethylbenzene	100-41-4	106	0.0300	0.130	0.178	0.772		1	WG2008837
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2008837
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0406	0.276		1	WG2008837
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2008837
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2008837
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2008837
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2008837
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2008837
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		112				WG2008837

Collected date/time: 02/17/23 14:54

(S) 1,4-Bromofluorobenzene 460-00-4

SAMPLE RESULTS - 05

L15

60.0-140

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.357	1.14		1	WG2008837
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0760	0.479		1	WG2008837
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2008837
Chloroform	67-66-3	119	0.200	0.973	24.9	121		10	WG2009318
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.839	1.73		1	WG2008837
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2008837
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2008837
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2008837
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0835	0.338		1	WG2008837
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2008837
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2008837
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2008837
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2008837
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2008837
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2008837
Ethylbenzene	100-41-4	106	0.0300	0.130	0.148	0.642		1	WG2008837
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2008837
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.164	1.11		1	WG2008837
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2008837
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2008837
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2008837
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2008837
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2008837
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		110				WG2008837

105

WG2009318

Collected date/time: 02/17/23 16:00

(S) 1,4-Bromofluorobenzene 460-00-4

Volatile Organic Compounds (MS) by Method TO-15-SIM

	CAS #	Mol. Wt.	RDL1	RDL2	Result	Result	Qualifier	Dilution	Batch
Analyte			ppbv	ug/m3	ppbv	ug/m3			
Benzene	71-43-2	78.10	0.0200	0.0639	0.415	1.33		1	WG2008837
Carbon tetrachloride	56-23-5	154	0.0200	0.126	0.0750	0.472		1	WG2008837
Chloroethane	75-00-3	64.50	0.0400	0.106	ND	ND		1	WG2008837
Chloroform	67-66-3	119	0.0200	0.0973	ND	ND		1	WG2008837
Chloromethane	74-87-3	50.50	0.0300	0.0620	0.663	1.37		1	WG2008837
1,2-Dibromoethane	106-93-4	188	0.0200	0.154	ND	ND		1	WG2008837
1,4-Dichlorobenzene	106-46-7	147	0.0200	0.120	ND	ND		1	WG2008837
1,1-Dichloroethane	75-34-3	98	0.0200	0.0802	ND	ND		1	WG2008837
1,2-Dichloroethane	107-06-2	99	0.0200	0.0810	0.0267	0.108		1	WG2008837
1,1-Dichloroethene	75-35-4	96.90	0.0200	0.0793	ND	ND		1	WG2008837
cis-1,2-Dichloroethene	156-59-2	96.90	0.0200	0.0793	ND	ND		1	WG2008837
trans-1,2-Dichloroethene	156-60-5	96.90	0.0200	0.0793	ND	ND		1	WG2008837
1,2-Dichloropropane	78-87-5	113	0.0300	0.139	ND	ND		1	WG2008837
cis-1,3-Dichloropropene	10061-01-5	111	0.0200	0.0908	ND	ND		1	WG2008837
trans-1,3-Dichloropropene	10061-02-6	111	0.0300	0.136	ND	ND		1	WG2008837
Ethylbenzene	100-41-4	106	0.0300	0.130	0.165	0.715		1	WG2008837
1,1,2,2-Tetrachloroethane	79-34-5	168	0.0200	0.137	ND	ND		1	WG2008837
Tetrachloroethylene	127-18-4	166	0.0200	0.136	0.0371	0.252		1	WG2008837
1,1,1-Trichloroethane	71-55-6	133	0.0200	0.109	ND	ND		1	WG2008837
1,1,2-Trichloroethane	79-00-5	133	0.0300	0.163	ND	ND		1	WG2008837
Trichloroethylene	79-01-6	131	0.0200	0.107	ND	ND		1	WG2008837
Vinyl chloride	75-01-4	62.50	0.0200	0.0511	ND	ND		1	WG2008837
Vinyl acetate	108-05-4	86.10	0.0200	0.0704	ND	ND		1	WG2008837

110

60.0-140

175

WG2008837

WG2008837

QUALITY CONTROL SUMMARY

L1587242-02,03,04,05,06

Volatile Organic Compounds (MS) by Method TO-15-SIM

Method Blank (MB)

(MB) R3892589-3 02/19/2	23 11:16				1
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	ppbv		ppbv	ppbv	2.
Benzene	U		0.0112	0.0200	Ŀ
Carbon tetrachloride	U		0.00995	0.0200	3
Chloroethane	U		0.00944	0.0400	Ľ
Chloroform	U		0.00729	0.0200	4
Chloromethane	U		0.0162	0.0300	4 (
1,2-Dibromoethane	U		0.00779	0.0200	L
1,4-Dichlorobenzene	U		0.00691	0.0200	5
1,1-Dichloroethane	U		0.00893	0.0200	L
1,2-Dichloroethane	U		0.000471	0.0200	6
1,1-Dichloroethene	U		0.00921	0.0200	6
cis-1,2-Dichloroethene	U		0.0142	0.0200	-
trans-1,2-Dichloroethene	U		0.00499	0.0200	7
1,2-Dichloropropane	U		0.00885	0.0300	
cis-1,3-Dichloropropene	U		0.00735	0.0200	8
trans-1,3-Dichloropropene	U		0.00711	0.0300	8
Ethylbenzene	U		0.0126	0.0300	느
1,1,2,2-Tetrachloroethane	U		0.00874	0.0200	9
Tetrachloroethylene	U		0.0127	0.0200	
1,1,1-Trichloroethane	U		0.00649	0.0200	10
1,1,2-Trichloroethane	U		0.00583	0.0300	10
Trichloroethylene	U		0.00746	0.0200	_
Vinyl chloride	U		0.00765	0.0200	
Vinyl acetate	U		0.0111	0.0200	
(S) 1,4-Bromofluorobenzene	98.4			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3892589-1 02/19/23 09:53 • (LCSD) R3892589-2 02/19/23 10:36

(ECS) 1(3032303 1 02/13	725 05.55 · (LCC	D) 113032303	2 02/15/25 10	.50						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
Benzene	0.500	0.529	0.524	106	105	70.0-130			0.950	25
Carbon tetrachloride	0.500	0.538	0.532	108	106	70.0-130			1.12	25
Chloroethane	0.500	0.598	0.598	120	120	70.0-130			0.000	25
Chloroform	0.500	0.547	0.546	109	109	70.0-130			0.183	25
Chloromethane	0.500	0.519	0.515	104	103	70.0-130			0.774	25
,2-Dibromoethane	0.500	0.535	0.504	107	101	70.0-130			5.97	25
4-Dichlorobenzene	0.500	0.542	0.576	108	115	70.0-130			6.08	25
,1-Dichloroethane	0.500	0.556	0.554	111	111	70.0-130			0.360	25
1,2-Dichloroethane	0.500	0.564	0.563	113	113	70.0-130			0.177	25

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1587242-02,03,04,05,06

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3892589-1 02/19/23 09:53 • (LCSD) R3892589-2 02/19/23 10:36

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,1-Dichloroethene	0.500	0.539	0.542	108	108	70.0-130			0.555	25
cis-1,2-Dichloroethene	0.500	0.522	0.523	104	105	70.0-130			0.191	25
trans-1,2-Dichloroethene	0.500	0.534	0.534	107	107	70.0-130			0.000	25
1,2-Dichloropropane	0.500	0.573	0.566	115	113	70.0-130			1.23	25
cis-1,3-Dichloropropene	0.500	0.521	0.501	104	100	70.0-130			3.91	25
trans-1,3-Dichloropropene	0.500	0.526	0.502	105	100	70.0-130			4.67	25
Ethylbenzene	0.500	0.535	0.534	107	107	70.0-130			0.187	25
1,1,2,2-Tetrachloroethane	0.500	0.539	0.550	108	110	70.0-130			2.02	25
Tetrachloroethylene	0.500	0.518	0.506	104	101	70.0-130			2.34	25
1,1,1-Trichloroethane	0.500	0.541	0.539	108	108	70.0-130			0.370	25
1,1,2-Trichloroethane	0.500	0.547	0.531	109	106	70.0-130			2.97	25
Trichloroethylene	0.500	0.543	0.539	109	108	70.0-130			0.739	25
Vinyl chloride	0.500	0.573	0.577	115	115	70.0-130			0.696	25
Vinyl acetate	0.500	0.502	0.503	100	101	70.0-130			0.199	25
(S) 1,4-Bromofluorobenzene	ò			99.0	106	60.0-140				

WG2009318

QUALITY CONTROL SUMMARY

L1587242-01,05

Mother of Diesels (MD)

Volatile Organic Compounds (MS) by Method TO-15-SIM

Method	Dlank	/ / N / I 🗩 \
MEHIOO	DIGLIK	COLVIDI

(MB) R3892969-3 02/20	/23 11:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	ī
Analyte	ppbv		ppbv	ppbv	
Benzene	U		0.0112	0.0200	Į.
Carbon tetrachloride	U		0.00995	0.0200	
Chloroethane	U		0.00944	0.0400	
Chloroform	U		0.00729	0.0200	ı
Chloromethane	U		0.0162	0.0300	
1,2-Dibromoethane	U		0.00779	0.0200	١
1,4-Dichlorobenzene	U		0.00691	0.0200	
1,1-Dichloroethane	U		0.00893	0.0200	
1,2-Dichloroethane	U		0.000471	0.0200	
1,1-Dichloroethene	U		0.00921	0.0200	
cis-1,2-Dichloroethene	U		0.0142	0.0200	
trans-1,2-Dichloroethene	U		0.00499	0.0200	
1,2-Dichloropropane	U		0.00885	0.0300	
cis-1,3-Dichloropropene	U		0.00735	0.0200	
trans-1,3-Dichloropropene	U		0.00711	0.0300	
Ethylbenzene	U		0.0126	0.0300	
1,1,2,2-Tetrachloroethane	U		0.00874	0.0200	
Tetrachloroethylene	U		0.0127	0.0200	
1,1,1-Trichloroethane	U		0.00649	0.0200	
1,1,2-Trichloroethane	U		0.00583	0.0300	
Trichloroethylene	U		0.00746	0.0200	
Vinyl chloride	U		0.00765	0.0200	
Vinyl acetate	U		0.0111	0.0200	
(S) 1,4-Bromofluorobenzene	90.9			60.0-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3892969-1 02/20/23 09:38 • (LCSD) R3892969-2 02/20/23 10:22

(LCS) R3632303-1 02/20/23 03.30 • (LCSD) R3632303-2 02/20/23 10.22											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%	
Benzene	0.500	0.551	0.545	110	109	70.0-130			1.09	25	
Carbon tetrachloride	0.500	0.543	0.551	109	110	70.0-130			1.46	25	
Chloroethane	0.500	0.586	0.567	117	113	70.0-130			3.30	25	
Chloroform	0.500	0.569	0.565	114	113	70.0-130			0.705	25	
Chloromethane	0.500	0.541	0.537	108	107	70.0-130			0.742	25	
1,2-Dibromoethane	0.500	0.556	0.549	111	110	70.0-130			1.27	25	
1,4-Dichlorobenzene	0.500	0.543	0.527	109	105	70.0-130			2.99	25	
1,1-Dichloroethane	0.500	0.578	0.574	116	115	70.0-130			0.694	25	
1,2-Dichloroethane	0.500	0.584	0.584	117	117	70.0-130			0.000	25	

SDG:

L1587242

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (MS) by Method TO-15-SIM

L1587242-01,05

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3892969-1 02/20/23 09:38 • (LCSD) R3892969-2 02/20/23 10:22

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppbv	ppbv	ppbv	%	%	%			%	%
1,1-Dichloroethene	0.500	0.562	0.561	112	112	70.0-130			0.178	25
cis-1,2-Dichloroethene	0.500	0.539	0.547	108	109	70.0-130			1.47	25
trans-1,2-Dichloroethene	0.500	0.557	0.556	111	111	70.0-130			0.180	25
1,2-Dichloropropane	0.500	0.593	0.587	119	117	70.0-130			1.02	25
cis-1,3-Dichloropropene	0.500	0.542	0.544	108	109	70.0-130			0.368	25
trans-1,3-Dichloropropene	0.500	0.550	0.546	110	109	70.0-130			0.730	25
Ethylbenzene	0.500	0.548	0.545	110	109	70.0-130			0.549	25
1,1,2,2-Tetrachloroethane	0.500	0.559	0.550	112	110	70.0-130			1.62	25
Tetrachloroethylene	0.500	0.533	0.522	107	104	70.0-130			2.09	25
1,1,1-Trichloroethane	0.500	0.562	0.557	112	111	70.0-130			0.894	25
1,1,2-Trichloroethane	0.500	0.565	0.557	113	111	70.0-130			1.43	25
Trichloroethylene	0.500	0.558	0.554	112	111	70.0-130			0.719	25
Vinyl chloride	0.500	0.569	0.573	114	115	70.0-130			0.701	25
Vinyl acetate	0.500	0.539	0.538	108	108	70.0-130			0.186	25
(S) 1,4-Bromofluorobenzene	,			98.8	98.8	60.0-140				

PAGE:

15 of 21

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LA000356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

^{*} Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

Company Name/Address: RMD Environmental -	Walnut Creek, CA		Billing Informati Accounts Pa 1371 Oakland	yable				Analys	is	Chain of Custody	Page 1 of 1	
1371 Oakland Blvd. Suite 200			Suite 200 Walnut Creek	Suite 200 Walnut Creek, CA 94596 Email To: Iinouye@rmdes.net;emale@rmdes.net							ADVANCING SCIENCE	
Report To:										12065 Lebanon Road Phone: 615-758-5858 Submitting a sample	Mt Juliet, TN 37122	
Project Police Credit Union Description:		City/State Collected:	SAN FRA	SAN FRANCISCO, CA Please Circle: P) MT CT ET							nd Conditions found at:	
Phone: Client Project # 01-DTSC-007			Lab Project #							SDG # O	1567247	
Collected by (print):	Site/Facility ID #		P.O. #				тша	MPLE	- 4	Acctnum: R	MDENVPHC	
Collected by (signature):	Collected by (signature): Rush? (Lab MUST Be Same Day Thre Next Day Five Two Day		STAH	Date Results Needed STANDARD TAT				D JAM	Prelogin: P97 PM: 3828 - Jenni		204372 979769 nnifer A McCurdy	
Sample ID			Coll	lection		Pressure/Vacuum	TO-15SIM Summa	401		Shipped Via:	P243/3 FedEX Ground	
TE IAQ-1284-1	012072	022743	111111111111111111111111111111111111111	1610	Initial	Final		+		Rem./Contaminant		
140-1284-2	012229	032742	2-17-23	1405	-30	-16	7	7			-01	
CAA-5	012184	006330		1339	-28	-7.5 -3.5	1				-07	
1-275 FBA	006936	022581		1434	-20	0		- 8			-03	
1AQ-1275-2	009309	022173	+	1454	- 29.5			0			-04	
1AQ-1275-3	012191	021275		1600	-30+	-5.5 -8	1	4	3		-05	
CAA-7	010850	022725		1000	-36+	-	Y	- TA			-00	
PM 2/17					34.	1-18.5	V	10	100	TANA	1/20	
	ned/Accurate		ıcable									
Remarks: Bottles Correct Suffici	arrive intact: 7 bottles used: 7 ent volume sent: 7 een <0.5 mR/hr: 7	_N VOA Zero Heads _N Pres.Correct/c _N	space: Y N Check: T N	VIS								
delinguished by : (Signature)	Date:	Time:	Received by	Courier y: (Signature)		Tracking #	2.0		Hold #			
GM	217	23 1621)	, (Signature)		Date:	īme:		Condition:	(lab u	ise only)	
elinguished by : (Signature) Date:		Time:	Received by: (Signature)			Date: Time:			COC 511-			
elinquished by : (Signature) Date:		Time:				Date: Time: 2/18/23 0900			COC Seal Intact:YNNA			

From: <u>Erin Male</u>

To: <u>Jennifer Mccurdy</u>; <u>Ivy Inouye</u>; <u>Erin Male</u>

Subject: Re: Pace Analytical National Login for 01-DTSC-007 Police Credit Union L1587242

Date: Sunday, February 19, 2023 10:36:42 AM

CAUTION: This email originated from outside Pace Analytical. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Jen,

Please take sample IAQ-1284-1 L1587242-01 off hold and analyze for TO-15 Sim like the other samples.

Thank you

Erin Male Project Geologist RMD Environmental Solutions/Citadel EHS

Sent from 415-571-6627

From: Jennifer A McCurdy < Jennifer. McCurdy@pacelabs.com>

Sent: Saturday, February 18, 2023 11:55:17 PM

To: iinouye@rmdes.net <iinouye@rmdes.net>; emale@rmdes.net <emale@rmdes.net> **Subject:** Pace Analytical National Login for 01-DTSC-007 Police Credit Union L1587242

CAUTION: This email originated from outside of the organization! Do not click links, open attachments or reply, unless you recognize the sender's email address and know the content is safe!

"Privileged and Confidential"

Thank you for choosing Pace National! Please find enclosed PDF files containing your laboratory login confirmation and chain of custody.

Pace National is leading the laboratory industry with our On-line Data Management tools. Please contact your Project Manager to learn how to create historical Excel tables or access data in real time using powerful and intuitive software that is only available at

https://urldefense.proofpoint.com/v2/url?u=https-

3A www.pacenational.com&d=DwIFAQ&c=euGZstcaTDllvimEN8b7jXrwqOf-

v5A_CdpgnVfiiMM&r=RXcPgELGIoZshLWy6JAfppkQhx8jDva-

o7qdMPcsNLk&m=q8ULyNTvW3WGMz9PuoLQ85wWiHhp64tk4VI8TH8CH-

 $\underline{Y\&s = nEKeb3LuAb2PWwQrhI4dboTsVFnZzFrXnNOskNFCGzA\&e =}.$

Visit Pace National's secure data management web site - myData - for all your reporting and data management needs at https://urldefense.proofpoint.com/v2/url?u=https-

3A www.pacenational.com_login&d=DwIFAQ&c=euGZstcaTDllvimEN8b7jXrwqOf-

v5A_CdpgnVfiiMM&r=RXcPgELGIoZshLWy6JAfppkQhx8jDva-

o7qdMPcsNLk&m=q8ULyNTvW3WGMz9PuoLQ85wWiHhp64tk4VI8TH8CH-Y&s=Uigi-

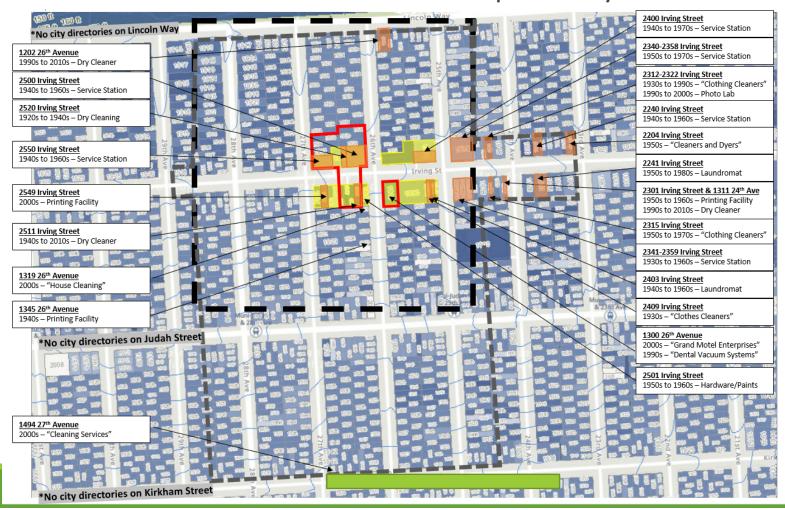
YEbGRJJDmnM27-M--NSNIiNcEo9fGFh3DGarYc&e=

Pace National ... "Your Lab of Choice"

Jennifer A McCurdy Technical Service Representative

--

Pace Analytical National


NOTICE-- The contents of this email and any attachments may contain confidential, privileged, and/or legally protected information and are for the sole use of the addressee(s). Any review or distribution by others is strictly prohibited. If you are not the intended recipient, please contact the sender immediately and delete any copies.

P Please consider the environment before printing this email

17/ IN19-1 11-1

DTSC Desk-Top Study

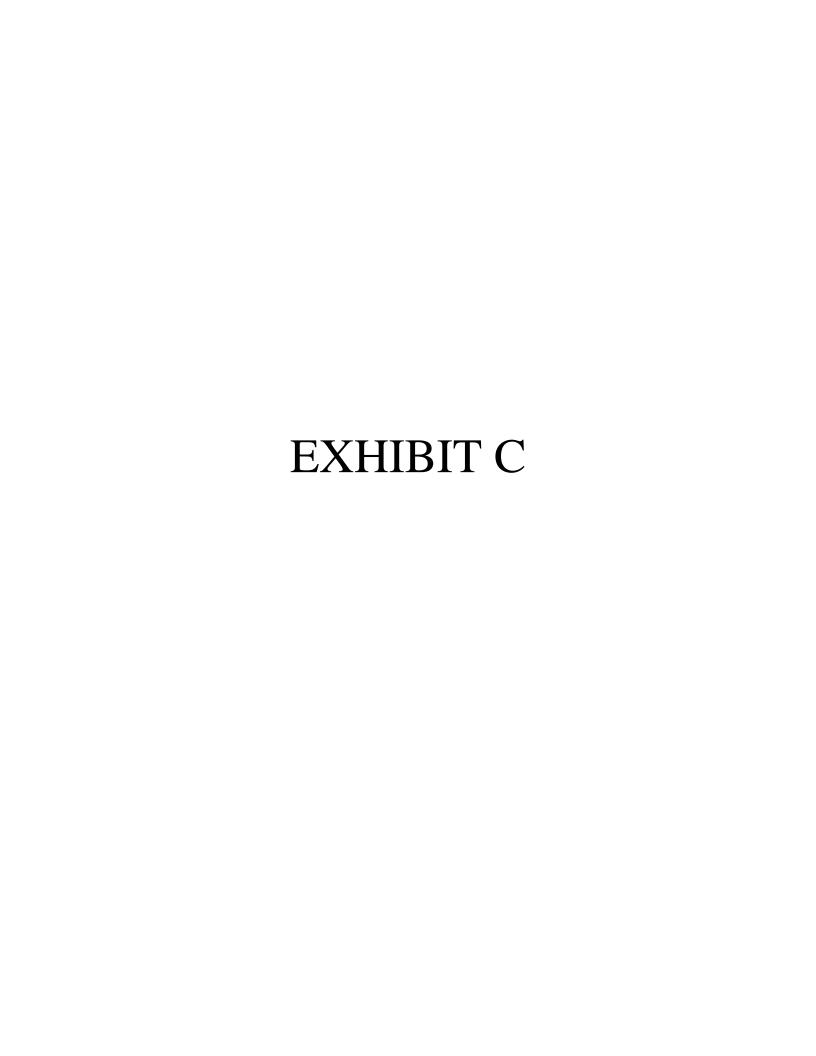


Table 4. PCE CONCENTRATIONS IN INDOOR AIR AND ESTIMATED RISKS The 2550 Irving Street Site San Francisco, California Page 1 of 1

Address	PCE Concentration Range (µg/m³)*	Mean PCE Concentration (μg/m³) ^b	# Samples >	PCE Residential Inhalation Risk ^d	Notes	Empirical AF, March 2022*	Empirical AF, February 2023*
1271 26 th Avenue	0.151 - 0.264	0.204	0	4.E-07	Highest concentrations in September 2021. All samples screened out after removing consumer products.	0.003	0.005
1275 26 th Avenue	0.276 - 2.010	1.147	3	2.E-06	Exceedances consistently on upper floor, including September 2021. Ground floor exceedance only in March 2022.	0.027	0.003
1281 26 th Avenue	0.232 - 1.230	0.686	2		TCE Upstairs 5.47 µg/m³ in March 2022. PCE results consistent with VI pathway.	0.007	0.002
1276 27 th Avenue	0.164 - 1.910	0.620	1	1.E-06	PCE exceedances inconsistent by floor and are data outliers.	0.020	0.003
1280 27 th Avenue	0.346 - 0.540	0.410	1	9.E-07	PCE results consistent with VI pathway.	0.004	0.006
1284 27 th Avenue	0.439 - 0.978	0.678	3	1.E-06	PCE results consistent with VI pathway. March 2022 outdoor air sample exceeded residential SL	0.011	0.009

- Notes:

 Lowest and highest concentrations from the March 2022 and February 2023 indoor air results from (Sampling events conducted by DTSC and RMD.)

 b Mean of 4 samples: upstairs and downstairs samples (2) and corresponding seasonal replicates (2)

 c Of 4 seasonal pair samples

 d Risk assessed by dividing mean concentration by HHRA Note 3 residential air screening level and multiplying by 10 ⁴. Reported to one significant figure.

 µg/m² = micrograms per cubic meter

 > = greater than

 ### = number

 PCE = tetrachloroethene

 *Empirical attenuation factors (AFs) are calculated by dividing the highest ground floor indoor air concentration by the concurrent external 5 foot depth soil vapor. For 1271 26th Avenue, the subslab vapor concentration was used in lieu of soil vapor.

Permit Holder's Response Brief to the Rehearing Request

September 7, 2023

Via E-Mail

Julie Rosenberg, Executive Director San Francisco Board of Appeals 49 South Van Ness Avenue, Suite 1475 San Francisco, CA 94013 boardofappeals@sfgov.org julie.rosenberg@sfgov.org

Re: Permit Holder's Brief in Opposition to Rehearing Request

Appeal No. 22-034

Hearing Date: September 13, 2023

Permit No. 2022/05/05/3630

Dear Director Rosenberg:

This firm represents 2550 Irving Associates LP ("TNDC"), the sponsor of the proposed affordable housing project (the "Project") located at 2550 Irving Street in San Francisco (the "Project Site"), and the applicant and holder of Site Permit No. 2022/0505/3630 (the "Permit"). On July 11, 2023, Mid-Sunset Neighborhood Association, Inc. ("MSNA" or "Appellant") appealed the issuance of the Permit. On July 28, 2023, MSNA filed a lengthy brief in support of its appeal, in which it made substantially the same arguments it now makes for a rehearing. On August ___, 2023, the Board of Appeals (the "Board") denied MSNA's appeal after hearing hours of testimony from the Appellant, the Department of Building Inspection ("DBI"), the Department of Toxic Substances Control ("DTSC"), the Department of Public Health ("SFDPH"), the Planning Department, TNDC, and many members of the public.

The Board's denial of MSNA's appeal of the Permit came several months after the Board denied MSNA's appeal of the demolition permit for the Project. In that February appeal, MSNA also submitted extensive briefing and the Board heard extensive testimony regarding essentially the same set of facts and issues MSNA is raising again in its request for a rehearing. MSNA has had ample opportunity to make its arguments in opposition to the Permit. Likewise, the Board has had ample opportunity to consider and weigh the merits of MSNA's claims.

In its current effort to re-hash the same arguments, MSNA describes no extraordinary circumstances and raises no new or different facts or circumstances that if known at the time of the original hearing could have affected the outcome. As such, and to bring closure to a process that has already consumed vast amounts of resources from the above referenced public agencies and TNDC, and to comply with state law, this Board must reject MSNA's request for rehearing.

MSNA Has Failed to Meet the Required Standard for Rehearing

"Except in extraordinary cases, and to prevent manifest injustice, the Board may grant a Rehearing Request *only upon a showing that new or different material facts or circumstances have arisen*, where such facts or circumstances, if known at the time, could have affected the outcome of the original hearing." See Board Rules, Article V, Section 9. MSNA has failed to allege let alone demonstrate factual conditions that justify a rehearing. Instead, MSNA essentially argues that MSNA's representatives should be given more time to make the same arguments again because it believes the Board got it wrong (twice) and that has resulted in a manifest injustice. This is not and cannot be the standard for a rehearing. MSNA has been heard. As a matter of fairness and as a matter of law, TNDC is entitled to move on from this process.

One of MSNA's key arguments for rehearing is that the results of DTSC's third round of indoor air sampling were not available in time for them to develop arguments for the appeal. This argument lacks merit for several reasons. First, by MSNA's own admission, the "levels [of PCE vapors] have been relatively consistent" in each round of testing. In other words, nothing about the results of the latest round of indoor air sampling change the general parameters of this issue that was fully argued in MSNA's briefs and at the previous hearings.

Second, *in five out of the six homes tested*, DTSC concluded that the measured levels were "below action levels" and in the sixth home DTSC found levels slightly exceeding action levels, stating "This risk is at the low-end of the risk management range, slightly greater than the point of departure that defines di minimis risk." The latest results are not new or extraordinary, and actually indicate slightly lower levels than previous rounds of testing.

Finally, MSNA argues that it didn't have time to evaluate and address the results before the last hearing. In fact, while the results were only made public on August 15, 2023, MSNA must have had access to the results earlier than that because Mr. Siegel's Declaration dated July 27, 2023 (over two weeks before the hearing), used the results to calculate and discuss attenuation factors associated with the purported contamination. See Exhibit J to MSNA's July brief. So obviously MSNA *did* have the results in time to evaluate them. Nothing about the third round of indoor air sampling results can fairly be characterized as new, different, or extraordinary in any way.

MSNA also argues, incredibly, that it has not had the opportunity to fully make arguments in favor of a "soil vapor extraction" ("SVE") system for the Site. The appropriateness of an SVE system was the *primary topic of discussion* during the marathon hearing in August,

and a central issue in the February hearing, as well. MSNA claims its expert, Mr. Grasmick, was not given adequate time to make his arguments fully understood. But Mr. Grasmick provided *nine pages* of testimony regarding his opinion about the implementation of an SVE system at the site in his written declaration attached as Exhibit H to MSNA's July brief, and provided additional oral testimony at the August hearing. In addition, DTSC directly addressed (and rejected) MSNA's request for SVE in the Responsiveness Summary for the Response Plan (which was included as an exhibit to TNDC's briefing), and addressed this issue with specificity in its August brief and testimony at the hearing. The notion that this issue has not been fully vetted borders on the absurd. MSNA offers no new facts or circumstances. Rather, MSNA simply feels the Board got it wrong and wants *another* do-over.

MSNA claims that because Don Moore was unable to attend the August hearing the Board should grant a rehearing so he can present findings related to a neighborhood scale PCE contamination soil vapor contour map. But this information was presented by Mr. Moore's extensive written testimony attached as Exhibit K to MSNA's July brief and discussed in detail in his January declaration and at the February hearing. Similarly, MSNA claims Mr. Moore's absence prevented him from making arguments regarding the claimed methodological shortcomings with DTSC's additional testing on the Project Site. Again, Mr. Moore's written testimony in July (Exhibit K) covered this issue, and this was another of the main points of discussion at the August hearing.

DTSC has committed itself to continuing the neighborhood scale PCE investigation and made it clear that issuance of the Permit is irrelevant to this ongoing effort. These arguments have been made and the issues heard. A rehearing on these issues is unwarranted.

SB 35 Limits the Board's Authority to Grant the Rehearing Request

Even if MSNA had met the standard required for the Board to grant a rehearing, the Board would be prohibited from granting that hearing due to the limitations placed on its authority by SB 35. As we pointed out in the original appeal, the statute requires "ministerial approval" of projects that qualify for streamlined treatment of SB 35. We do not wish to repeat here the full SB 35 argument we made in opposition to MSNA's appeal of the Permit, but we remind the Board of the following key points.

According to the regulatory guidelines for SB 35 ("Guidelines") adopted by the California Department of Housing and Community Development ("HCD"), a ministerial approval is one in which a public official exercises "little or no personal judgment" as to "the wisdom or manner of carrying out the project." HCD Guidelines at Section 102(n). In cases like this, where the Planning Department has determined (and no one challenged the determination) that the Project is eligible for SB 35, the statute provides that "[the local government] *shall* approve the development." Cal. Gov't Code § 65913.4(c)(1) (*emphasis added*).

The ministerial requirement applies not only to initial approvals, but also to subsequent permits, including demolition permit and building permits. SB 35 provides that "[a] local government *shall issue* a subsequent permit required for a development approved under [SB 35] if the application substantially complies with the development as it was approved pursuant to [local objective standards]." *Id.* §§ 65913.4(h)(2)(A) (*emphasis added*). Here, the Planning Department confirmed the building permit application substantially complied with the development as initially approved. On this basis, DBI properly issued the Permit. Under these circumstances the law is clear that the Board must reject MSNA's attempt to hold up the Permit.

HCD agrees with this view. It has twice weighed in to make the above points and to put the Board on notice that granting MSNA's appeal would run afoul of state law. A copy of HCD's letter to the Board dated February 22, 2022, [sic] is attached hereto as **Exhibit A.** A copy of HCD's letter the Board dated August 10, 2023, is attached hereto as **Exhibit B.** We urge the Board to respect the rule of law and reject MSNA's request for rehearing.

Conclusion

MSNA has failed to demonstrate the requisite facts that would justify a rehearing of the Permit appeal. This Board has carefully considered and debated MSNA's claims in two previous proceedings, and has twice arrived at the same conclusion. MSNA may strongly disagree with the Board's decisions, but that is not the standard. MSNA's appeals to date have significantly added to the cost of delivering the Project, and a rehearing would further burden the Project with unnecessary costs. Given the scarcity of available funding for affordable housing, this money would be better spent on housing for people who need it. TNDC respectfully requests that this Board reject MSNA's request so that it may commence the important work of building affordable housing on the Project Site.

Very truly yours,

Charles J. Higley

EXHIBIT A HCD Letter to Board dated February 22, 2022 [sic]

DEPARTMENT OF HOUSING AND COMMUNITY DEVELOPMENT DIVISION OF HOUSING POLICY DEVELOPMENT

2020 W. El Camino Avenue, Suite 500 Sacramento, CA 95833 (916) 263-2911 / FAX (916) 263-7453 www.hcd.ca.gov

February 22, 2022

San Francisco Board of Appeals City and County of San Francisco Via: <u>boardofappeals@sfqov.orq</u> 49 S Van Ness Ave. San Francisco, CA 94103

Dear San Francisco Board of Appeals:

RE: 2550 Irving Street - Letter of Support and Technical Assistance

The purpose of this letter is to provide technical assistance to the City and County of San Francisco (City/County) regarding the housing project located at 2550 Irving Street managed by Tenderloin Neighborhood Development Corporation (TNDC). This assistance is based in part upon Appeal No. 22-092 that was heard at the February 8, 2023, Board of Appeals meeting and continued to the February 22 meeting. Appeal No. 22-092 is an appeal of the demolition permit issued on November 18, 2022. Apparently, appellants believe that the project should be subject to additional review relating to hazardous substances.

The California Department of Housing and Community Development (HCD) is submitting this letter to aid with the interpretation of the Streamlined Ministerial Approval Process created by Senate Bill (SB) 35 (Chapter 366, Statutes of 2017) and codified in Government Code section 65913.4 in relation to the appeal of the demolition permit.

Project Approval under the Streamlined Ministerial Approval Process

The 90-unit affordable housing project was processed and approved under Government Code section 65913.4 (SB 35 streamlining). Section 65913.4, subdivision (a), states that a development proponent may submit an application for a development that is subject to the streamlined, ministerial approval process provided by subdivision (c) and is not subject to a conditional use permit (CUP) or any other non-legislative discretionary approval if the development satisfies all of the objective planning standards outlined in subdivision (a). San Francisco's approval of the SB 35 application establishes that the project does comply with all the objective standards set forth in subdivision (a).

The only one of these standards that is even potentially relevant to the project or this appeal is set forth in Government Code section 65913.4, subdivision (a)(6)(E), which states that a project located on a hazardous waste site that is listed pursuant to Government Code section 65962.5 or a hazardous waste site designated by the

Department of Toxic Substances Control (DTSC) pursuant to Health and Safety Code section 25356 does not qualify for streamlined ministerial review under SB 35 unless DTSC has cleared the site for residential use or residential mixed-uses. The project site at issue here is not located on any listed or designated hazardous waste site, so this exception to streamlined, ministerial approval does not apply.

Moreover, DTSC approved a Site Assessment Plan and Report of Findings on June 8, 2021, confirming that the project site had been adequately characterized under DTSC standards. The project site was not identified as a hazardous waste site pursuant to Government Code section 65962.5 or Health and Safety Code section 25356 and was not listed on the Hazardous Waste and Substances Sites List.

Hence, the project meets the requirements of Government Code section 65913.4, subdivision (a)(6)(E). Accordingly, pursuant to Government Code section 65913.4, subdivision (c)(1), the City/County acted correctly when it approved the project and when it granted the demolition permit in question. To derail the project now by overturning the grant of the demolition permit would fly in the face of SB 35.

"Subsequent Permits" after Streamlined Ministerial Approval Process

Government Code section 65913.4, subdivision (h)(2)(A), addresses the issue of demolition permits explicitly. It states, "A local government *shall issue* a subsequent permit required for a development under this section if the application substantially complies with the development as it was approved pursuant to subdivision (c)." (Emphasis added.)

The project at issue here was approved pursuant to subdivision (c) when it was originally approved under SB 35, and HCD understands that the application for the demolition permit complies completely with the development as it was approved at that time. Accordingly, subdivision (h)(2)(A) mandates issuance of the demolition permit "without unreasonable delay" and makes clear that review of the demolition "permit application shall not inhibit, chill, or preclude the development." To do anything other than reject Appeal No. 22-092 would violate this statutory rule.

Limitations on Public Oversight of SB 35 Projects

Furthermore, Government Code section 65913.4, subdivision (d)(1), clearly limits the scope of review and public oversight on SB 35 projects. Under this subdivision, design review or public oversight shall be objective and be strictly focused on assessing compliance with criteria required for streamlined projects and shall not in any way inhibit, chill, or preclude ministerial approval.

Since there are no conflicts with subdivision (a), including subdivision (a)(6)(E) as discussed above, no further public oversight is permissible. Certainly, further review of a hazardous waste issue already reviewed by DTSC and covered by the City in its review of the SB 35 application is not appropriate. Analysis of criteria required for streamlined

San Francisco Board of Appeals Page 3

projects has already been completed through the SB 35 application process. An appeal of the demolition permit is incompatible with streamlined, ministerial approval and is not permitted under subdivision (d).¹

Conclusion

The State of California is in a housing crisis, and the provision of housing is a priority of the highest order. HCD encourages the Board of Appeals to deny the appeal and uphold the approval of the Project's demolition permit. The Board of Appeals should remain mindful of the City/County's obligations under the Streamlined Ministerial Approval Process created by SB 35 and codified in Government Code section 65913.4.

HCD would also like to remind the City that HCD has enforcement authority over the implementation of Government Code section 65913.4, among other state housing laws. Accordingly, HCD may review local government actions and inactions to determine consistency with these laws. If HCD finds that a local government's actions do not comply with state law, HCD may notify the California Office of the Attorney General that the local government is in violation of state law (Gov. Code, § 65585, subd. (j)).

If you have any questions regarding the content of this letter or would like additional technical assistance, please contact Bentley Regehr at bentley.regehr@hcd.ca.gov.

Sincerely,

Shannan West

Housing Accountability Unit Chief

¹ HCD understands that the nearby site located at 2511 Irving Street is a hazardous waste site pursuant to Government Code section 65962.5 and has been placed on the Cortese List. However, this site does not affect the standing of 2550 Irving Street, which has undergone independent evaluation by the DTSC.

EXHIBIT B HCD Letter to Board dated August 10, 2023

DEPARTMENT OF HOUSING AND COMMUNITY DEVELOPMENT DIVISION OF HOUSING POLICY DEVELOPMENT

2020 W. El Camino Avenue, Suite 500 Sacramento, CA 95833 (916) 263-2911 / FAX (916) 263-7453 www.hcd.ca.gov

August 10, 2023

San Francisco Board of Appeals City and County of San Francisco Via: <u>boardofappeals@sfgov.org</u> 49 S Van Ness Ave. San Francisco, CA 94103

Dear San Francisco Board of Appeals:

RE: 2550 Irving Street - Letter of Support and Technical Assistance

The purpose of this letter is to provide technical assistance to the City and County of San Francisco (City/County) regarding the housing project proposed at 2550 Irving Street (Project) by the Tenderloin Neighborhood Development Corporation (TNDC). This assistance is based partly upon Appeal No. 23-034 that is scheduled to be heard at the August 16, 2023, Board of Appeals meeting. Appeal No. 23-034 is an appeal of the site permit issued on June 26, 2023.

The California Department of Housing and Community Development (HCD) is submitting this letter to aid with the interpretation of the Streamlined Ministerial Approval Process created by Senate Bill (SB) 35 (Chapter 366, Statutes of 2017) and codified in Government Code section 65913.4 in relation to the appeal of the site permit. On February 22, 2023, HCD provided a Letter of Support and Technical Assistance regarding the appeal of the Project's demolition permit. Much of that letter's discussion is applicable to this appeal as well. It is HCD's understanding that the site and Project description have not changed and that no additional studies have been conducted since the February appeal hearing that would impact the Project's eligibility for streamlining.

Project Approval under the Streamlined Ministerial Approval Process

The 90-unit affordable housing Project was processed and approved under Government Code section 65913.4 (SB 35 streamlining). Section 65913.4, subdivision (a), states that a development proponent may submit an application for a development that is subject to the streamlined, ministerial approval process provided by subdivision (c) and is not subject to a conditional use permit (CUP) or any other non-legislative discretionary approval if the development satisfies all of the objective planning standards outlined in subdivision (a). As noted in HCD's previous technical assistance letter, San Francisco's approval of the SB 35 application establishes that the Project does comply with all the objective standards set forth in subdivision (a).

Of particular relevance is Government Code section 65913.4, subdivision (a)(6)(E), which states that a project located on a hazardous waste site that is listed pursuant to Government Code section 65962.5 or a hazardous waste site designated by the Department of Toxic Substances Control (DTSC) pursuant to Health and Safety Code section 25356 does not qualify for streamlined ministerial review under SB 35 unless DTSC has cleared the site for residential use or residential mixed-uses. It is HCD's understanding that the Project is not located on any listed or designated hazardous waste site, so this exception to streamlined, ministerial approval does not apply. Moreover, DTSC approved a Site Assessment Plan and Report of Findings on June 8, 2021, confirming that the Project site had been adequately analyzed under DTSC standards. The Project site was not identified as a hazardous waste site pursuant to Government Code section 65962.5 or Health and Safety Code section 25356 and was not listed on the Hazardous Waste and Substances Sites List. Thus, the Project meets the requirements for streamlined review under Government Code section 65913.4, subdivision (a)(6)(E).

Section 65913.4 goes on to state, in subdivision (c)(1), "If a local government determines that a development submitted pursuant to this section is consistent with the objective planning standards specified in subdivision (a) . . . it shall approve the development." Accordingly, the City/County acted correctly when it approved the Project under SB 35 and when it granted the site permit in question, and the Board of Appeals acted correctly when denying the appeal of the demolition permit in February. As with the appeal of the demolition permit, upholding the appeal of the site permit would be counter to the requirements of SB 35 streamlining.

Furthermore, Government Code section 65913.4, subdivision (h)(2)(A), requires that "[i]ssuance of subsequent permits shall implement the approved development, and review of the permit application shall not inhibit, chill, or preclude the development. For purposes of this paragraph, a subsequent permit means a permit required subsequent to receiving approval under subdivision (c), and includes, but is not limited to, demolition, grading, encroachment, and building permits and final maps, if necessary." A site permit meets this definition of subsequent permits, and therefore an appeal of the site permit would be considered an attempt to chill or preclude development.

Limitations on Public Oversight of SB 35 Projects

Additionally, Government Code section 65913.4, subdivision (d)(1), clearly limits the scope of review and public oversight on SB 35 projects. Under this subdivision, design review or public oversight shall be objective and be strictly focused on assessing compliance with criteria required for streamlined projects and, similar to subdivision (h)(2)(A), shall not in any way inhibit, chill, or preclude ministerial approval.

Since there are no conflicts with subdivision (a), including subdivision (a)(6)(E) as discussed above, no further public oversight is permissible. Undoubtedly, further review of a hazardous waste issue already reviewed by DTSC and covered by the City in its review of the SB 35 application is not appropriate. Analysis of criteria required for streamlined

projects has already been completed through the SB 35 application process. An appeal of the demolition permit, site permit, or any other future permit covered under the project's SB 35 application is incompatible with streamlined, ministerial approval and is not permitted under subdivision (d).

Conclusion

The State of California is in a housing crisis, and the provision of housing is a priority of the highest order. HCD encourages the Board of Appeals to deny the appeal and uphold the approval of the Project's site permit. Granting this or any future appeal would be in violation of the Streamlined Ministerial Approval Process created by SB 35 and codified in Government Code section 65913.4.

HCD would also like to remind the City/County that HCD has enforcement authority over the implementation of Government Code section 65913.4, among other state housing laws. Accordingly, HCD may review local government actions and inactions to determine consistency with these laws. If HCD finds that a local government's actions do not comply with state law, HCD may notify the California Office of the Attorney General that the local government is in violation of state law (Gov. Code, § 65585, subd. (j)).

If you have any questions regarding the content of this letter or would like additional technical assistance, please contact Bentley Regehr at bentley.regehr@hcd.ca.gov.

Sincerely,

Shannan West

Housing Accountability Unit Chief

REHEARING REQUEST BRIEF SUBMITTED BY DTSC

Department of Toxic Substances Control

Gavin Newsom Governor

Meredith Williams, Ph.D.
Director
700 Heinz Avenue
Berkeley, California 94710-2721

September 7, 2023

Yana Garcia

Secretary for

onmental Protection

Board of Appeals
City and County of San Francisco
boardofappeals@sfgov.org
julie.rosenberg@sfgov.org
corey.teague@sfgov.org
matthew.greene@sfgov.org
enochwang@fifelawllp.com
cjhigley@fbm.com

APPEAL No. 23-034
MID-SUNSET NEIGHBORHOOD ASSOCIATION, INC., APPELLANT v.
DEPARTMENT OF BUILDING INSPECTION, RESPONDENT.
DTSC BRIEF OPPOSING MSNA'S REHEARING REQUEST

As noted in Mid-Sunset Neighborhood Association's (MSNA's) Rehearing Request, "Except in extraordinary cases, and to prevent manifest injustice, the Board may grant a Rehearing Request only upon a showing that new or different material facts or circumstances have arisen, where such facts or circumstances, if known at the time of the original hearing, could have affected the outcome of the hearing." MSNA's claims are twofold: (1) that the board's disproportionate time questioning DTSC led to manifest

injustice and (2) that new material facts have arisen that were not known at the time of the original hearing that could affect the outcome. DTSC disagrees with both assertions.

DTSC believes that the hearing was conducted fairly and that the claims by MSNA are non-material and/or were known at the time of the hearing.

A. The Board's Hearing Did Not Result in "Manifest Injustice"

In its Brief in Support of its Rehearing Request, MSNA states that a rehearing is warranted to prevent manifest injustice. It bases its claims in part on an allegation that witnesses from Department of Toxic Substances Control (DTSC) were "allowed time to testify far exceeding the time allocated to MSNA's experts" and that, because of the "imbalance of time allocated," MSNA did not have the opportunity to prove up the grounds for its appeal. *Id.* at 2. DTSC disagrees with MSNA's characterization of the proceedings and believes the Board conducted the hearing fairly and without prejudice to MSNA.

The Board allocated seven minutes each to DTSC and MSNA to present their findings. Reviewing the recording of the proceedings, MSNA provides uninterrupted testimony from approximately 2:19:40 to 2:27:12, or for around 7 minutes and 32 seconds. DTSC's presentation beings at approximately 2:59:35 and ends at approximately 3:06:40, putting its duration at around 7 minutes and 6 seconds. MSNA's time was not reduced and if anything, MSNA presented for ever so slightly longer than DTSC.

Commissioners questioned both MSNA and DTSC representatives after their respective presentations. While the time allocated for presentations was roughly equal, it is true that DTSC's representatives spent longer at the podium answering questions from the Board. However, this difference in duration was due primarily to the commissioners'

thorough, skeptical examination of the agency's evidence, not due to any unfair favoritism, and it was not the cause of any injustice.

Additionally, while the questions to MSNA were fairly narrow, relating to the contents of the appeal, the Board asked DTSC broader questions which included larger matters of agency policy, testing and remediation methods, and public participation approaches pertaining to Tetrachloroethylene (PCE) contamination throughout the neighborhood as a whole, not just as to 2550 Irving Street. DTSC representatives responded to Commissioners' questions to the best of their ability but did not seek to expand the extent of their testimony.

B. MSNA Is Not Offering New, Material Facts

In addition to claiming "manifest injustice," MSNA asserts that new material facts have come to light that could have affected the outcome of the hearing. To support this assertion, they point to one document entitled "Off-Site Residential Indoor Air and Soil Vapor Report – March 2022 and February 2023" ("Report"), an indoor air testing report for six residential properties to the north of 2550 Irving Street. However, DTSC disagrees that the Report contains facts that are either new or material to the issuance of the building permit. MSNA also asserts that it plans to offer new testimony regarding the necessity and efficacy of soil vapor extraction, as well as additional opinions from numerous individuals who the board has already heard from several times.

While the Report itself was only finalized shortly before the appeal hearing, the data contained Report was shared with MSNA well before that. DTSC completed and finalized the Report on Friday August 11th and met with residents on Monday August 14th prior to posting the report for the general public and meeting with MSNA representatives on Tuesday August 15th. However, in the attached email dated March 13,

2023, MSNA's environmental consultant, Don Moore confirms that he received and reviewed the indoor air and soil vapor results from both the March 2022 and February 2023 sampling events, showing that MSNA had all of the same data for at least five months before the hearing. **Exhibit A.** MSNA's Brief in Support of the Appeal, as well as the declarations of Joan Klau and Lenny Siegel refer to the testing results multiple times. *Id.* at 3; Klau Decl. ¶ 3; Siegel Decl. ¶¶ 5-7. Mr. Siegel's declaration, filed in conjunction with the appeal, includes an exhibit that compiles the results from all the indoor air testing in the residences to the north, including the two rounds covered in the Off-Site Residential Indoor Air and Soil Vapor Report (Exhibit 2 to Siegel Declaration). The Report and the results were discussed by MSNA and community members during the hearing, and DTSC received questions from commissioners regarding the results. See August 16, 2023 Board of Appeals hearing video for Item #6 at timestamps 4:28:06, 4:31:15, 4:31:16, 4:41:20, 4:44:49, and 4:54:04.

Given how extensively the off-site residential indoor air testing results were covered in the prior briefing and the August 16th hearing, the report and the data do not represent new facts or circumstances that could change the outcome of the hearing. Furthermore, the materiality of the report to the building permit appeal is questionable. Based on DTSC's thorough investigation and analysis, the subject property is not a source zone for PCE, and construction of the proposed building will not inhibit DTSC's ability to conduct further investigations and potential remediation of the source if and when it is located. The Report does not change that conclusion.

MSNA also states that it plans to offer additional testimony by Lenny Siegel, Don Moore, and Dan Grasmick, to support MSNA's argument that DTSC's testing was inadequate, that a soil vapor extraction system is necessary to protect onsite residents

and neighbors, and that DTSC did not follow its guidance. However, all the same individuals submitted declarations for the August 16th hearing and/or testified in the hearing asserting the same. There is no indication the testimony being offered will convey new material facts as opposed to new variations on the analysis and opinions already presented.

As DTSC has stated throughout its testimony before the Board of Appeals and in various hearings and public meetings, DTSC is committed to ensuring the PCE contamination in the 2500 block of Irving and beyond is investigated and that all residents, including residents of the new development and surrounding neighbors, remain safe. The issuance of the building permit that is the subject of this appeal will not in any way impede DTSC in pursuing that commitment. Because the building will not prevent the investigation and remediation of PCE contamination in the neighborhood, because no new or different material facts have arisen since the August 16th hearing, and because MSNA's offered testimony appears to be duplicative of testimony already given (first to the board of supervisors, then to the board of appeals), DTSC opposes a rehearing.

Date: September 7, 2023

By:

Kathryn Kriozere (SBN 298513)

Senior Staff Counsel, Department of Toxic Substances Control

Exhibit A

Email from Don Moore, dated March 13, 2023

From: Don Moore <dmoore@cleanfinancials.com>

Sent: Monday, March 13, 2023 5:44 PM

To: Kowbel, Nelline@DTSC <Nelline.Kowbel@dtsc.ca.gov>; 'Paul Holzman' <pbholzman@gmail.com>; Smith,

Whitney@DTSC < Whitney.Smith@dtsc.ca.gov >

Cc: Williams, Meredith@DTSC < Meredith.Williams@dtsc.ca.gov >; 'Lenny Siegel' < LSiegel@cpeo.org >; 'Flo Kimmerling'

<geokimm@sbcglobal.net>; Sax, Todd@DTSC < Todd.Sax@dtsc.ca.gov>

Subject: RE: HNY! 2500 Block of Irving PCE Plume Follow Up

Nelline / Whit -

Your participation in the SF Board of Appeals (BOA) meeting was appreciated as it was good to hear a few fragments of answers to our questions below posed in early January; however, the key questions largely remain unaddressed. It was particularly good to hear that an ISE Order to the Police Credit Union (PCU) may be in the works which is long overdue after their abrupt exit after selling the property. We disagreed with a number of DTSC responses at the BOA meeting but were not provided an opportunity to rebut. We did all heard the BOA Commissioners ask DTSC to consider the Resolution unanimously approved by the SF Board of Supervisors (BOS) for a comprehensive cleanup of the 2500 block of Irving which remains the primary goal of the MSNA.

- Recent IA / SV Data we have seen the recent IA and soil vapor data and residents continue to breathe PCE above the DTSC ESL. However, what is most evident by the data is that soil vapor levels are increasing significantly at a number of locations this is contrary to prior DTSC statements that the SV plume is stable / decreasing. The 15-foot samples at SVP-30B have increased 25-times from Sept 2020 to Feb 2023 and at SVP-28B they have increased 30-times with significant variability over this period. The generally increasing / unstable SV levels are indicative of a nearby source area.
- <u>Miracle Cleaner Source Investigation</u> you can say whatever you want, but in my 30+ years of consulting, I have never seen a source investigation that does not sample at the actual location of where the dry cleaning operations were conducted this is where the highest levels will be found. The soil matrix detection just outside the footprint of Miracle Cleaners clearly shows PCE was used in their operations contrary to the assertions of TNDC's consultant. Consultants for both the PCU and TNDC misrepresented data in their conclusions about the source area and misled DTSC. **Miracle Cleaners did use PCE and a source investigation at that location remains a significant data gap.**
- SVE is the Appropriate Technology for a Neighborhood-Wide Cleanup as reflected in the attached Response Plan Addendum, DTSC's own contractor, RMD Environmental, showed that SVE is the most technically- and cost-effective cleanup technology for this situation. SVE has been validated by experts at Apex, Stantec and Ramboll that is expected to result in a quick and effective cleanup. DTSC failed to comment on the TNDC Response Plan that was inconsistent with two DTSC guidance documents which should have considered SVE and identified VIMS as a possible interim measure only after implementation of active remediation to the extent feasible.
- <u>Highest Level of Protection for Current Residents</u> during our September meeting, Meredith stated that this situation warranted the highest level of protection as reflected in the meeting notes. Lenny, myself and numerous colleagues including RMD are involved in and aware of numerous DTSC and Water Board projects that require remediation and / or mitigation for IA levels above the ESL. While the current focus is on the north side of Irving Street, the SV levels adjacent homes on the south side of Irving are twice as high as the north side when will further step out sampling be conducted on the south side of Irving to fully delineate the attached PCE plume? Data suggests IA risk is higher in this area. In this residential setting, with decades of exposure certainly at higher historic levels, with preferential pathways and sensitive populations the highest level of protection within DTSC's authority should be applied.

We look forward to DTSC's continued efforts to realize the BOS Resolution and DTSC's Mission Statement – protecting human health by cleaning up contaminated sites.

Planning Department's Response Brief to the Rehearing Request

BOARD OF APPEALS BRIEF

HEARING DATE: September 13, 2023

September 7, 2023

Appeal No.: 23-034

Project Address: 2550 Irving Street

Subject: Interpretation and Application of State Laws

Staff Contact: Corey Teague, Zoning Administrator – (628) 652-7328

corey.teague@sfgov.org

Introduction

This brief is intended to provide a concise response to the rehearing request filed following the appeal hearing on August 16, 2023. On September 13, 2023, the Board will consider the Mid-Sunset Neighborhood Association, Inc's Rehearing Request for the appeal of site permit no. 202205053630 for the project at 2550 Irving.

Project Approval under Streamlined Ministerial Approval Process

Section 9 of the Rules of the Board of Appeals states that Board may only grant a Rehearing Request only in extraordinary cases, and to prevent manifest injustice and "only upon showing that new or different material facts or circumstances have arisen" which could have affected the original outcome of the hearing. The Appellant's Brief in Support of the Rehearing Request presents no new or different material facts, nor does it show that new circumstances have arisen, that would warrant rehearing by the Board.

As noted in correspondence from the California Department of Housing and Community Development dated August 10, 2023, the project is not located on a hazardous waste site as defined in State Law, so the issues raised by the appellant in the Rehearing Request would not change the project's eligibility for streamlining under **Board of Appeals Brief** Appeal No. 23-034

Rehearing Request

Hearing Date: September 13, 2023

CA Government Code Section 65913.4 ("SB 35"), which is the subject of the hearing. Furthermore, SB 35 states

that issuance of subsequent permits, such as the site permit here, shall "implement the approved development,

and review of the permit application shall not inhibit, chill or preclude the development." Granting the rehearing

request when no new or different material facts or circumstances have been presented would have the effect of

chilling or precluding the development, contrary to the intent of SB 35.

Conclusion

To conclude, the appellant has not provided information to demonstrate that there would be a different

outcome from the appeal hearing on August 16, 2023, and granting a rehearing request would not be consistent

with state law. The Planning Department urges the Board of Appeals to deny the Request for Rehearing.

cc:

Kate Conner (Planning Department)

Carly Grob (Planning Department)

Enclosures:

Exhibit A – Letter from the California Department of Housing and Community Development

Dated August 10, 2023

Planning

2

DEPARTMENT OF HOUSING AND COMMUNITY DEVELOPMENT DIVISION OF HOUSING POLICY DEVELOPMENT

2020 W. El Camino Avenue, Suite 500 Sacramento, CA 95833 (916) 263-2911 / FAX (916) 263-7453 www.hcd.ca.gov

August 10, 2023

San Francisco Board of Appeals City and County of San Francisco Via: <u>boardofappeals@sfgov.org</u> 49 S Van Ness Ave. San Francisco, CA 94103

Dear San Francisco Board of Appeals:

RE: 2550 Irving Street – Letter of Support and Technical Assistance

The purpose of this letter is to provide technical assistance to the City and County of San Francisco (City/County) regarding the housing project proposed at 2550 Irving Street (Project) by the Tenderloin Neighborhood Development Corporation (TNDC). This assistance is based partly upon Appeal No. 23-034 that is scheduled to be heard at the August 16, 2023, Board of Appeals meeting. Appeal No. 23-034 is an appeal of the site permit issued on June 26, 2023.

The California Department of Housing and Community Development (HCD) is submitting this letter to aid with the interpretation of the Streamlined Ministerial Approval Process created by Senate Bill (SB) 35 (Chapter 366, Statutes of 2017) and codified in Government Code section 65913.4 in relation to the appeal of the site permit. On February 22, 2023, HCD provided a Letter of Support and Technical Assistance regarding the appeal of the Project's demolition permit. Much of that letter's discussion is applicable to this appeal as well. It is HCD's understanding that the site and Project description have not changed and that no additional studies have been conducted since the February appeal hearing that would impact the Project's eligibility for streamlining.

Project Approval under the Streamlined Ministerial Approval Process

The 90-unit affordable housing Project was processed and approved under Government Code section 65913.4 (SB 35 streamlining). Section 65913.4, subdivision (a), states that a development proponent may submit an application for a development that is subject to the streamlined, ministerial approval process provided by subdivision (c) and is not subject to a conditional use permit (CUP) or any other non-legislative discretionary approval if the development satisfies all of the objective planning standards outlined in subdivision (a). As noted in HCD's previous technical assistance letter, San Francisco's approval of the SB 35 application establishes that the Project does comply with all the objective standards set forth in subdivision (a).

Of particular relevance is Government Code section 65913.4, subdivision (a)(6)(E), which states that a project located on a hazardous waste site that is listed pursuant to Government Code section 65962.5 or a hazardous waste site designated by the Department of Toxic Substances Control (DTSC) pursuant to Health and Safety Code section 25356 does not qualify for streamlined ministerial review under SB 35 unless DTSC has cleared the site for residential use or residential mixed-uses. It is HCD's understanding that the Project is not located on any listed or designated hazardous waste site, so this exception to streamlined, ministerial approval does not apply. Moreover, DTSC approved a Site Assessment Plan and Report of Findings on June 8, 2021, confirming that the Project site had been adequately analyzed under DTSC standards. The Project site was not identified as a hazardous waste site pursuant to Government Code section 65962.5 or Health and Safety Code section 25356 and was not listed on the Hazardous Waste and Substances Sites List. Thus, the Project meets the requirements for streamlined review under Government Code section 65913.4, subdivision (a)(6)(E).

Section 65913.4 goes on to state, in subdivision (c)(1), "If a local government determines that a development submitted pursuant to this section is consistent with the objective planning standards specified in subdivision (a) . . . it shall approve the development." Accordingly, the City/County acted correctly when it approved the Project under SB 35 and when it granted the site permit in question, and the Board of Appeals acted correctly when denying the appeal of the demolition permit in February. As with the appeal of the demolition permit, upholding the appeal of the site permit would be counter to the requirements of SB 35 streamlining.

Furthermore, Government Code section 65913.4, subdivision (h)(2)(A), requires that "[i]ssuance of subsequent permits shall implement the approved development, and review of the permit application shall not inhibit, chill, or preclude the development. For purposes of this paragraph, a subsequent permit means a permit required subsequent to receiving approval under subdivision (c), and includes, but is not limited to, demolition, grading, encroachment, and building permits and final maps, if necessary." A site permit meets this definition of subsequent permits, and therefore an appeal of the site permit would be considered an attempt to chill or preclude development.

Limitations on Public Oversight of SB 35 Projects

Additionally, Government Code section 65913.4, subdivision (d)(1), clearly limits the scope of review and public oversight on SB 35 projects. Under this subdivision, design review or public oversight shall be objective and be strictly focused on assessing compliance with criteria required for streamlined projects and, similar to subdivision (h)(2)(A), shall not in any way inhibit, chill, or preclude ministerial approval.

Since there are no conflicts with subdivision (a), including subdivision (a)(6)(E) as discussed above, no further public oversight is permissible. Undoubtedly, further review of a hazardous waste issue already reviewed by DTSC and covered by the City in its review of the SB 35 application is not appropriate. Analysis of criteria required for streamlined

projects has already been completed through the SB 35 application process. An appeal of the demolition permit, site permit, or any other future permit covered under the project's SB 35 application is incompatible with streamlined, ministerial approval and is not permitted under subdivision (d).

Conclusion

The State of California is in a housing crisis, and the provision of housing is a priority of the highest order. HCD encourages the Board of Appeals to deny the appeal and uphold the approval of the Project's site permit. Granting this or any future appeal would be in violation of the Streamlined Ministerial Approval Process created by SB 35 and codified in Government Code section 65913.4.

HCD would also like to remind the City/County that HCD has enforcement authority over the implementation of Government Code section 65913.4, among other state housing laws. Accordingly, HCD may review local government actions and inactions to determine consistency with these laws. If HCD finds that a local government's actions do not comply with state law, HCD may notify the California Office of the Attorney General that the local government is in violation of state law (Gov. Code, § 65585, subd. (j)).

If you have any questions regarding the content of this letter or would like additional technical assistance, please contact Bentley Regehr at bentley.regehr@hcd.ca.gov.

Sincerely,

Shannan West

Housing Accountability Unit Chief

DPH's Response Brief to the Rehearing Request

San Francisco Department of Public Health's Brief in Opposition to the Rehearing Request of Appeal No. 23-034

The San Francisco Department of Public Health, Environmental Health Branch, Contaminated Site Assessment and Mitigation (Maher) Program is tasked with ensuring the proper implementation of San Francisco Health Code (SFHC) Article 22A (the "Maher Ordinance"). The Maher Ordinance grants the authority to oversee the investigation, analysis, and (when deemed necessary) remediation or mitigation of hazardous substances in the subsurface within specified areas of the City and County of San Francisco. This brief is being submitted by the Department of Public Health (DPH) to the Board of Appeals (BOA) as a representative of the Department of Building Inspection (DBI) due to the specific health-related issues raised within the Appeal.

STATEMENT OF FACTS

- A Maher program application submitted on May 17, 2021 and Applicant received a Maher program case number (SMED 2043).
- The Maher program reviewed the September 2021 Response Plan and November 2021 Site Management Plan and issued a Site Management Plan Approval letter on February 2, 2022. The letter stated that the Maher program "defers environmental cleanup authority to the DTSC, a state agency, and will review all submitted items that are specifically applicable to SFHC Article 22A." The letter requires the submission of a Final Report and Certification following completion of development activities, in compliance with SFHC Article 22A.11.
- On August 22, 2022, the DPH reviewed and approved the Health Station on Site Permit
 No. 202205053630 associated with the proposed development.

DISCUSSION & CONCLUSIONS

No new or different material facts or circumstances have arisen.

- Since the hearing of Appeal No. 23-034, which was decided on August 16, 2023, no new
 or different material facts or circumstances have arisen that have changed the original
 determination of both DPH and DBI that the Applicant has met all applicable Site Permit
 requirements.
- DPH understands that there are two voluntary cleanup cases under the oversight of the California Department of Toxic Substances Control (DTSC), a state agency, at the property. One case (Envirostor No. 60003063) is associated with the current owner (TNDC) and involves installation of a vapor intrusion mitigation system through implementation of the approved Response Plan. The other case (Envirostor No. 60003000) is associated with the previous owner (TPCU) and has recently involved collection of off-site residential indoor air and soil vapor samples.
 - Based on our review of the information, the new sampling data does not change
 DPH's original determination that all data continue to indicate (1) conformance
 with Maher program requirements and (2) continued protection of on-site workers
 and the neighboring community.
 - O It is DPH's understanding that investigations of tetrachloroethene (PCE) impacts to the subsurface in the area are on-going. These investigations will continue independently under the oversight of DTSC, separate from the construction of the proposed development at 2550 Irving.

Sincerely,

Ryan Casey, P.E. (CA)

Engineer

September 6, 2023

PUBLIC COMMENT

Mejia, Xiomara (BOA)

From: Sent: Roy Curry <roy@roycurry.com> Friday, August 11, 2023 2:59 PM

To:

BoardofAppeals (PAB)

Subject:

Appeal No. 23-034 at 2550 Irving street

BOARD OF APPEALS

AUG 1 1 2023

APPEAL #23-03L

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Dear Commissioners:

I am concerned and opposed to the above project until there is clarification of the toxins on the land of the project. I am also concerned and perplexed about the size of the building and its height and the effect it will have on the surrounding neighbors. It seems out of place a giant eyesore.

Roy Curry PO Box 29568 San Francisco, Ca. 94129

HD 8/16/23

FILE

Mejia, Xiomara (BOA)

From:

Alemayehu Mergia <alekjud@gmail.com>

Sent:

Friday, August 11, 2023 10:35 AM

To:

BoardofAppeals (PAB)

Subject:

Appeal #24-034-2550 Irving Building Permit

AUG 1 1 2022

APPEAL # 23-034

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

RE: boardofappeals@sfgov.org Appeal #23-034 -2550 Irving Building Permit

Dear Commissioners of the Board of Appeals:

I am writing in support of denying the Building Permit Appeal # 23-034 and cause remediation to the 2550 site and neighboring area of PCE toxins, a cancer-causing carcinogen.

After reviewing the hearing of February on this same case, due to inadequacies of soils testing requested by the BOA orally last February, and agreed to by DTSC subsequently, time has been lost and it is necessary now to begin soil vapor extraction (soil vapor extraction) at 2550 Irving, a least expensive comprehensive solution, less expensive than anything TNDC (Tenderloin Neighborhood Development Corporation) was proposing. The SVE alternative will keep the project on schedule and have a lifetime efficacy and reliability, unlike TNDC's proposal.

It can be substantiated that SVE as an option, was completely avoided in TNDC's original study for unknown reasons. However, several independent experts claim SVE will remediate the problem of the PCE in the soil and air in all segments of the brownfield that up till now, have been demised into legal properties as separate projects and certain areas avoided by design to undermine the conclusions of independent experts. The independent Experts through collaboration and pooling of experience, now have adequate data that allows them to amend TNDC's Soil Management plan (SMP).

DTSC (Department of Toxic Substances Control) has argued their "sometimes theory" of needing to identify a "source" to clean up the PCE through a drawn-out iterative process. But now many professionals know this is not the case. Iterative processes takes longer. The source theory no longer becomes relevant when a pattern becomes so obvious according to several independent licensed professionals.

DTSC's methods have failed and have spiraled and atrophied into a ploy to cover up their mistakes of not characterizing the site as hazardous before signing a CLRRA agreement with TNDC. In fact, the south side of this City block is on the Cortese List causing a double Standard of development between low income people and market rate people. Developers for Market Rate housing now want the lower standard acquired to the North across the street to apply.

It is likely that SB35, being a relatively new law, was not coordinated with the original intent for CLRRA (voluntary) agreements: an "amnesty" program to get owners to encourage responsibility.

This bureaucratic detail further delayed the project by absolving TNDC of any responsibilities for the toxin, PCE, by compromising DTSC's core mission, to protect Public Health.

Limited to the foundation plane of TNDC's new proposed building at 2550 Irving, a passive VIM system was proposed. But this remedy normally is limited to existing buildings, not new buildings, and is recommended only as an interim solution by State policy. Further, DTSC's flawed response plan of September 2020 left the toxins in place with suggesting to adjacent neighbors to tape over their grade level shower drains.

Residents in many communities in California are being offered great cancer-risk protection. Why is this neighborhood not treated equally?

After the BOA Hearing in February, TNDC had a chance to look for the PCE source causing excessive air screening levels in homes to the North but choose again to design a plan that would not find it. Additionally, DTSC's theory stressed that you need to sample and prove "a source" to authorize a clean-up of PCE. But this too contradicts DTSC's own written guidance. The statement is arbitrary and not supported by practitioners or peers.

There is a preponderance of evidence right now to know the area should be remediated, not mitigated. It can be done now, without delaying the project. If TNDC continues to fight this, they will choose to delay their own project. The BOA can hardly be admonished for "chilling" by correcting this omission when DTSC's own iterative process has inherently "chilled" affordable housing production. Opposition public comment alleging that the BOA has no recourse under recent "chilling" legislation, may not be binding legislation yet. Please listen carefully to the appellant presenting team experts and allow them equal and adequate time to present and rebut.

Build the building, but we ask that TNDC "clean it up before you build it up".

Thank You,

Alemayehu Mergia

1498 24TH AVE

San Francisco, CA94122

null

HD 8/16/23

Mejia, Xiomara (BOA)

BOARD OF APPEALS

From:

Milo Trauss <milotrauss@gmail.com>

AUG 1 4 2023

Sent:

Monday, August 14, 2023 1:44 PM

To:

BoardofAppeals (PAB)

APPEAL #23-034

Subject:

Reject Appeal to 2550 Irving, and Support new homes for families

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Dear Board of Appeals,

Please reject the appeal and support bringing new homes to the Sunset.

This proposal is exactly what the city needs, 100% affordable housing.

Meanwhile, opponents' concerns are short sighted, narrow, and insignificant. In comparison to the fruition of new affordable homes, that are literally life changing and life saving, for generations, concerns over a few months of construction noise, a taller building in view, or new traffic patterns (as we collectively move away from car use), could not be more petty.

Thank you for your leadership in centering our city's greatest needs. Milo Trauss

7 year SF resident and parent to a young child

Milo Trauss (he/him)
milotrauss@qmail.com
215-370-1225

Mejia, Xiomara (BOA)

BOARD OF APPEALS

From:

Isadore Rosenthal <isadore.rosenthal@gmail.com>

AUG 1 5 2023

Sent:

Tuesday, August 15, 2023 6:02 PM

To:

BoardofAppeals (PAB)

APPEAL # 23 - 034

Subject:

DTSC.

Re: The Most Protective Remedy for Removal of PCE Removal at 2550 Irving Street Site

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Sorry my referenced as appeal should have included the statement: the removal of PCE soil vapor.

On Thu, Aug 10, 2023, 3:40 PM Isadore Rosenthal <isadore.rosenthal@gmail.com> wrote:

1) We urge The Appeal Board to support the soil vapor evaporation as the most protective remedy for the removal of toxic PCE in the soil under & surrounding the 2550 Irving Street Site. The problem is that PCE is in the soil and in the air at this site This site should have been characterized as hazardous as the site before the CLRRA agreement was 2)We therefore question the permit because other processes were closed to our signed with the TNDC. neighborhood organization, the MSNA. 3)In early 2021, TNDC and DTSC signed a CLRRA agreement that allowed the TNDC to not evaluate cleanup alternatives. 4)Because of SB35 and the fact that DTSC did not include the property on the Cortese List of hazardous materials, this project at 1550 Irving Street was not required to undergo an environmental review. Albright Cleaners site, at 2511 Irving Street, across the street from the 2550 Irving Street site, is on the Cortese List of hazardous materials. It is common knowledge that PCE soil vapor travels as a gas in the air and can last for a long time. This adds to the hazardous state of PCE at 2550 Irving Street. TNDC had an opportunity look for PCE on the 2550 site but disregarded a plan that would not find it. There is enough evidence right now to that the area should be cleaned up. A plan was designed not to look for PCE. This is hardly in keeping with the scientific method that DTSC purports to follow. 5)In September 2022, Mr. Meredith Williams, the Director of DTSC, promised "that DTSC will push for the most protective remedy" for the neighborhood.

urge the Board of Appeals to require that the most protective remedy, i.e., soil vapor evaporation, be used at the 2550

Sincerely, Isadore Risenthal, 1434-25th Avenue, San Francisco, CA 94122

Irving Street site as promised by Mr. Meredith Williams, The Director of the

HD 8/16/23

Mejia, Xiomara (BOA)

From:

Steve Leeds < cordello45@yahoo.com>

Sent:

Wednesday, August 16, 2023 5:40 PM

To:

BoardofAppeals (PAB)

Subject:

Appeal # 023-34 - Reject it.

BOARD OF APPEALS

AUG 1 6 2023

APPEAL # 23-034

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

To the Board of Appeals

My name is Steve Leeds, a long time resident of the westside of SF, District 7.

The appeal of the site permit application by the Mid Sunset Neighborhood Association is another attempt to impede affordable housing development in the Sunset District. On August 4, 2020, the San Francisco Planning Department confirmed the eligibility of 2550 Irving Street for a ministerial approval process under SB -35

As a westside resident, I strongly believe that the mitigation measures proposed by Tenderloin Neighborhood Development Corporation will protect the health of the future residents at 2550 Irving. The Sunset District as a whole has a huge underinvestment in affordable housing. District 4 falls behind every other district in the City when it comes to building affordable housing.

I strongly urge you to deny this frivolous appeal and grant TNDC their site permit to build much needed housing at 2550 lrving.

Thank you,

Steve Leeds D 7 Resident - Inner Sunset SF 94122

Mejia, Xiomara (BOA)

From:

Michael Appel <info@email.actionnetwork.org>

Sent:

Friday, August 18, 2023 5:54 PM

To:

BoardofAppeals (PAB)

Subject:

AUG 1 8 2023

Support 100% Affordable Homes at 2550 Irving Street in The Sunset!

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Members of the Board of Appeals,

San Francisco's housing shortage and affordability crisis is more acute than ever, which is why I am urging you to reject the appeal that jeopardizes a 100% affordable project at 2550 Irving Street.

Our city urgently needs more affordable housing on the Westside generally and in District 4 specifically. District 4, in fact, falls behind every other district when it comes to building affordable housing. As unbelievable as it sounds, District 4 has added only 17 new affordable homes over the last decade!

Opponents to this project have sued and appealed every step of the way, losing each time. This most recent appeal is yet another meritless attempt to block desperately needed affordable housing. With rising housing prices and the continued displacement of longstanding families, the 100% affordable homes at 2550 Irving Street will expand access and opportunities for working families and renters by creating safe and stable homes in a community with good access to schools, parks, and the Irving Street commercial district. They will also help address SF's staggering housing inequality, allow diverse families to remain in our Westside community, and support the urgent needs of our most vulnerable neighbors.

Again, I'm urging you to reject this attempt to block 100% affordable homes to 2550 Irving Street. Thank you.

Michael Appel michaeltappel@gmail.com San Francisco, California 94102

Mejia, Xiomara (BOA)

From: Sent:

Connor Dearing <info@email.actionnetwork.org>

Sunday, August 20, 2023 10:16 AM

To:

BoardofAppeals (PAB)

Subject:

BOARD OF APPEALS

Support 100% Affordable Homes at 2550 Irving Street in The Sunset!

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Members of the Board of Appeals,

San Francisco's housing shortage and affordability crisis is more acute than ever, which is why I am urging you to reject this frivolous appeal that jeopardizes a 100% affordable project at 2550 Irving Street.

Our city urgently needs more affordable housing on the Westside generally and in District 4 specifically. District 4, in fact, falls behind every other district when it comes to building affordable housing. As unbelievable as it sounds, District 4 has added only 17 new affordable homes over the last decade!

Opponents to this project have sued and appealed every step of the way, losing each time. This most recent appeal is yet another meritless and transparent attempt to block desperately needed affordable housing. With rising housing prices and the continued displacement of longstanding families, the 100% affordable homes at 2550 Irving Street will expand access and opportunities for working families and renters by creating safe and stable homes in a community with good access to schools, parks, and the Irving Street commercial district. They will also help address SF's staggering housing inequality, allow diverse families to remain in our Westside community, and support the urgent needs of our most vulnerable neighbors.

Again, I'm urging you to reject this attempt to block 100% affordable homes to 2550 Irving Street. Thank you.

Connor Dearing connordearing@gmail.com San Francisco, California 94114

 From:
 Kathleen Kelley

 To:
 BoardofAppeals (PAB)

 Cc:
 Kathleen Kelley

Subject: Support for Re-hearing Appeal Number 23-034 for 2550 Irving Street

Date: Thursday, September 7, 2023 11:34:02 AM

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Dear President of the Board of Appeals and Board Commissioners,

I am writing in support of Appeal Number 23-034 for a Re-Hearing of this Appeal for reasons of manifest injustice.

Much information has been already sent to you to review and I appreciate greatly your patience and understanding during the hearings in February and August on this important (and what I believe may be a landmark appeal about public health) issue we are facing about the request for testing and clean-up of the known toxin PCE at the 2550 site and surrounding neighborhood slated for much needed real affordable housing in San Francisco.

There have been articles in the Mission Local and the SF Chronicle newspapers since the Aug 16th BOA Hearing and I will use those as a springboard for my comments as the articles draw out key points I feel deeply that I wish to make.

https://www.sfchronicle.com/bayarea/article/sunset-district-affordable-housing-18303126.php

https://missionlocal.org/2023/08/2550-irving-street-affordable-housing-soil-toxins-pce-board-of-appeals/

https://missionlocal.org/2023/08/affordable-housing-sunset-san-francisco-2550-irving-toxic/

• Why didn't DTSC do the same testing as across the street at 2511 Irving Street as asked by BOA and by us?

From the Eskenazi Aug 21st Mission Local article: the argument, paraphrasing DTSC, "*I didn't do what you wanted, I did something else. And it cost a lot more money — and you should be grateful*" is not a winner".

- DTSC did not do what the BOA asked and did not do what we asked. DTSC did other testing and spent more \$ than necessary.
- DTSC was allotted much more time in the August hearing than the neighbors to respond, which I find to be manifest injustice.
- DTSC attended a meeting in bad faith with the neighbors the night before the hearing,

(without the DTSC Whit Smith) saying they had "no information". The following day at the hearing DTSC's Whit Smith showed up with many pages of documents to share with the BOA. DTSC has consistently avoided meaningful communication with neighbors. There is a timeline which proves this.

- From Eskenazi article dated Aug 21,2023: "Both the neighborhood association and the Board of Appeals thought an agreement was reached in February to undertake PCE testing in the footprint of a former Miracle Cleaners dry-cleaning business at 2550 Irving, with the testing method being identical to the tests already performed across the street at the site of a second dry-cleaner". But this did not happen: The Department of Toxic Substances Control in fact, did different sorts of testing analyzing different sorts of things, which cost more than five times as much money." Respectfully, I am surprised and concerned that the BOA did not support the Appeal on this basis. Why are we allowing the toxins to remain and continue to threaten public health?
- Supervisor Engardio asked questions (from Eskenazi article dated Aug 21st)
 Engardio: "You would think that the tests they did on two sites, on two different sides of the street, would be the same, so they'd have a true comparison," said Engardio.
 Toxic Substances Control "is claiming it did all the testing, and everything is fine. But it does not match up to what the neighborhood asked for, or what a layperson might see as apples to apples."
 Engardio stresses that "It's not my role to second-guess a state agency that's in charge of keeping people safe." But, if only to check off a box, "It is baffling to me they would not have done apples to apples tests just to take this argument off the table."
- There is a great deal of double talk, distraction and expert bombast going on with DTSC because they don't want to do the proper testing (same testing as across the street as appropriately requested by the BOA and the neighbors) because that would be admitting that DTSC had not properly handled the site toxicity to begin with. DTSC behavior has been unconventional and inconsistent with their own guidelines. There is a timeline which proves this out.
- From the Eskenazi article: Dan Grasmick, an engineer and environmental consultant speaking on behalf of the neighborhood association, went further. At last week's meeting, he called the state's tests "seriously flawed," and said its testing regimen "appears to have been designed to not identify a primary source."

Reference the Aug 19, 2023 Chronicle article:

• One of the Commissioners said "I see a very bright line between the contamination

which needs to be remediated and the permit we are here to consider," ... "I don't think the permit is material to the contamination issues."

This argument makes no sense. The Appeal and the Contamination are directly linked and we are talking about endangerment of life. To approve the Permit and Deny the Appeal is to do nothing and allow the contamination to NOT be remediated. If the appeal is denied this is Manifest Injustice.

• One of the Commissioners said (paraphrasing) "this seems to be the wrong venue to hear this case".

This is the appropriate venue. The courts are not an option where DTSC has immunity.

- One of the Commissioners also said: "Neighbors should have been able to argue their case to the Planning Commission and the Board of Supervisors, not just the Board of Appeals. "I don't think we should be the body imbued with this power, but unfortunately our state Legislature has ripped away the other layers of review."
- The BOA is the <u>only</u> venue currently. To deny this appeal is to do nothing about the proven contamination in the neighborhood. This is Manifest Injustice.
- To deny this appeal is Manifest Injustice and to turn our back on Public Health. The exposure exists and has proven in these neighbors houses as testified by our experts.
- One of the BOA Commissioners that supported the appeal on Aug 16th said:
 Reporter Will Jarrett with Mission Local Aug 17, quote: "I'm ready to grant the appeal, based on an overreliance on, and misplaced deference to, DTSC," said the Commissioner, referring to the Department of Toxic Substance Control. He contended that the agency did not meet and communicate enough with residents, and said he was disappointed it did not complete the additional soil vapor tests the Mid-Sunset Neighborhood Association requested. "If we really believe in affordable housing, if we really believe in the public health of the people of San Francisco, and future people in San Francisco, then we have to do this right," he said.

In closing, Commissioners, I respectfully ask that you grant a re-hearing and support this appeal as this is the ONLY opportunity to ask for the proper testing and the SVE, to take care of this toxic site, address this public health issue properly, cost less and be a permanent solution, (than the DTSC proposal of VIM), not delay the project schedule and to move forward with this housing. The neighbors literally have NO other place to turn . Please take grant a re-hearing and please support this very fair appeal request for public health. We look to the BOA to provide an efficient, fair and expeditious public hearing and decision-making

process before an impartial panel. You are the last step in the City's review process.

Respectfully, Kathleen Kelley, Sunset District Resident
 From:
 Mary OConnor

 To:
 BoardofAppeals (PAB)

Subject: 2550 Irving Street - Appeal for a re-hearing - FULL REMEDIATION FOR ALL RESIDENTS....

Date: Thursday, September 7, 2023 2:06:46 PM

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

1. Key Points

2.

- Writing in support of the appellant for Manifest Injustice.
- Made aware of PCE Contamination in 2021 two years after the PCU Building was evacuated temporarily and modified to address PCE vapor intrusion into that building
 - I am Worried for health of myself, my son, and my neighbors:
- Reference the cancer cluster map indicating a clear correlation and pattern.
 - Across the street from 2550 at 2511 Irving Street, the site will be fully remediated as it is on the Cortese list.
 - On the 2550 Irving Street, North side of the street, DTSC is proposing a temporary VIM solution for the future residents of the 2550 Irving Street project and has not explained why they are doing nothing to protect neighbors next to the project where our experts have demonstrated there are higher than acceptable PCE levels.
 - There must be a full remediation for <u>all residents</u>, <u>future and present</u>. There is no reason why SVE (soil vapor extraction) can't be done. <u>It should</u> <u>be done</u>. It can be done <u>without slowing down the project</u>. Construction can still start in late spring. DTSC has no excuse.
 - To deny the appeal is equal to doing nothing.
 - Surrounding residents have lived with vapor intrusion into their homes over the course of 70 years. Exposure is the priority metric.
 - To do nothing is Manifest Injustice

2. Additional Key Points

• Why didn't DTSC do the same testing as across the street at 2511 Irving Street as asked by BOA and by us?

From the Eskenazi Aug 21st Mission Local article: the argument, paraphrasing DTSC performance,

"I didn't do what you wanted, I did something else. And it cost a lot more money — and you should be grateful" is not a winner".

 DTSC did not do what the BOA asked in February and did not do what the neighbors asked. DTSC did other testing and spent more \$ than necessary.

DTSC was given at least an hour to present evidence (of not doing the testing that was asked of them in February); while the neighbor's attorney and expert witnesses were given a much shorter time slot.

- From Eskenazi article dated Aug 21,2023: "Both the neighborhood association and the Board of Appeals thought an agreement was reached in February to undertake PCE testing in the footprint of a former Miraclee Cleaners dry-cleaning business at 2550 Irving, with the testing method being identical to the tests already performed across the street at the site of a second dry-cleaner". But this did not happen: The Department of Toxic Substances Control in fact, did different sorts of testing analyzing different sorts of things, which cost more than five times as much money."
- Supervisor Engardio asked questions (from Eskenazi Aug 21 article)
 Engardio: "You would think that the tests they did on two sites, on two different sides
 of the street, would be the same, so they'd have a true comparison," said Engardio.
 Toxic Substances Control "is claiming it did all the testing, and everything is fine. But it
 does not match up to what the neighborhood asked for, or what a layperson might see
 as apples to apples."
 Engardio stresses that "It's not my role to second-guess a state agency that's in charge
 of keeping people safe." But, if only to check off a box, "It is baffling to me they would

not have done apples to apples tests just to take this argument off the table."

- There is a great deal of CYA going on with DTSC because they don't want to do the
 proper testing (same testing as across the street) because that would be admitting
 that DTSC had not properly handled the site toxicity to begin with. <u>DTSC behavior has
 been unconventional and inconsistent with their own guidelines.</u>
- From the Eskenazi article: Dan Grasmick, an engineer and <u>environmental</u> <u>consultant</u> speaking on behalf of the neighborhood association, went further. At last week's meeting, he called the state's tests "seriously flawed," and said its testing regimen "appears to have been designed to not identify a primary source."

Reference the Aug 19, 2023 SF Chronicle JK Dineen article:

• One of the Commissioners said "I see a very bright line between the contamination which needs to be remediated and the permit we are here to consider," ... "I don't think

the permit is material to the contamination issues."

This argument makes no sense. The Appeal and the Contamination are directly linked and we are talking about endangerment of life. To approve the Permit and Deny the Appeal is to do nothing and allow the contamination to NOT be remediated.

This is Manifest Injustice.

• One of the Commissioners said (paraphrasing) "this seems to be the wrong venue to hear this case".

This is the appropriate venue. The courts are not an option where DTSC has immunity.

- One of the Commissioners also said: "Neighbors should have been able to argue their
 case to the Planning Commission and the Board of Supervisors, not just the Board of
 Appeals. "I don't think we should be the body imbued with this power, but
 unfortunately our state Legislature has ripped away the other layers of review."
- The BOA is the <u>only</u> venue currently. To deny this appeal is to do nothing about the proven contamination in the neighborhood. This is Manifest Injustice.
- To deny this appeal is Manifest Injustice and to turn our back on Public Health. This BOA venue IS our only change to have this case heard.
- One of the BOA Commissioners that supported the appeal on Aug 16th said: Reporter Will Jarrett with Mission Local Aug 17, quoted another Commissioner: "I'm ready to grant the appeal, based on an overreliance on, and misplaced deference to, DTSC," said the Commissioner, referring to the Department of Toxic Substance Control. He contended that the agency did not meet and communicate enough with residents, and said he was disappointed it did not complete the additional soil vapor tests the Mid-Sunset Neighborhood Association requested. "If we really believe in affordable housing, if we really believe in the public health of the people of San Francisco, and future people in San Francisco, then we have to do this right," he said.

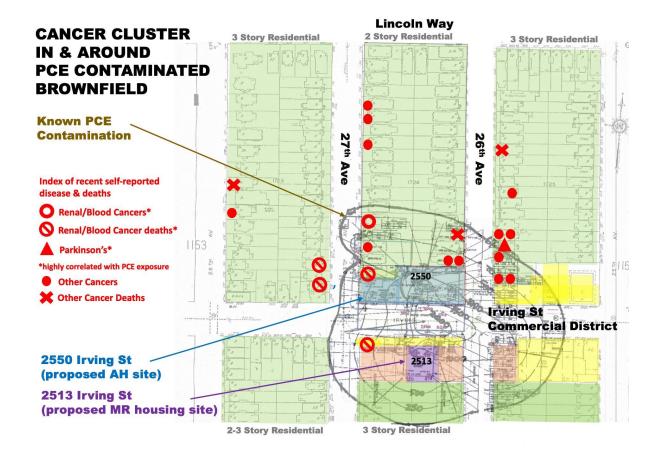
Please support this appeal for a Re-Hearing.

Thank You, Mary Ellen O'Connor 1462 - 26th Avenue
 From:
 JJ Hollingsworth

 To:
 BoardofAppeals (PAB)

 Subject:
 Appeal No. 23-034

Date: Thursday, September 7, 2023 3:59:02 PM


This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Dear Board of Appeals:

Re: Appeal No. 23-034

This appeal is strictly about PCE soil contamination engulfing the entire 2500 Irving Block. In our last BOA hearing on August 16, there was manifest injustice committed by rules of order that prevented the appellant from presenting its case in equal time. This is not about a disagreement with affordable housing. This injustice permits us to request a rehearing consistent within BOA regulations.

To stress what is at stake here, I am attaching the Cancer map which is a study we recently undertook in the neighborhood adjacent to the proposed project.

2550 Irving has not been remediated even though 2511 Irving directly across the street has been.

With this cancer cluster map indicating a clear correlation and pattern, do you really think you will not be held accountable and liable in the future?

Across the street from 2550 at 2511 Irving Street, the site will be fully remediated as it is on the Cortese list.

They are doing nothing to protect neighbors next to the project where our experts have demonstrated there are higher than acceptable PCE levels.

There must be a full remediation for <u>all residents</u>, <u>future and present</u>. There is no reason why SVE (soil vapor extraction) can't be done. <u>It should be done</u>. It can be done <u>without slowing down the project</u>. Construction can still start in late spring. DTSC has no excuse.

To deny the appeal is equal to doing <u>nothing</u>.

Surrounding residents have lived with vapor intrusion into their homes over the course of 70 years. Exposure is the priority metric.

To do nothing is Manifest Injustice.

Why didn't DTSC do the same testing as across the street at 2511 Irving Street as asked by BOA and by us?

From the Eskenazi Aug 21stMission Local article: the argument, paraphrasing DTSC performance,

"I didn't do what you wanted, I did something else. And it cost a lot more money — and you should be grateful" is not a winner".

DTSC did not do what the BOA asked in February and did not do what the neighbors asked. DTSC did other testing and spent more \$ than necessary.

DTSC was given at least an hour to present evidence (of not doing the testing that was asked of them in February); while the neighbor's attorney and expert witnesses were given a much shorter time slot.

It is well-known by the public that this process has been a gross injustice. Citations in the press and meeting minutes include:

- From Eskenazi article dated Aug 21,2023: "Both the neighborhood association and the Board of Appeals thought an agreement was reached in February to undertake PCE testing in the footprint of a former Miracle Cleaners dry-cleaning business at 2550 Irving, with the testing method being identical to the tests already performed across the street at the site of a second dry-cleaner". But this did not happen: The Department of Toxic Substances Control in fact, did *different* sorts of testing analyzing different sorts of things, which cost more than five times as much money."
- Supervisor Engardio asked questions (from Eskenazi Aug 21 article)

Engardio: "You would think that the tests they did on two sites, on two different sides of the street, would be the same, so they'd have a true comparison," said

Engardio. Toxic Substances Control "is claiming it did all the testing, and everything is fine. But it does not match up to what the neighborhood asked for, or what a layperson might see as apples to apples."

Engardio stresses that "It's not my role to second-guess a state agency that's in charge of keeping people safe." But, if only to check off a box, "It is baffling to me they would not have done apples to apples tests just to take this argument off the table."

- There is a great deal of CYA going on with DTSC because they don't want to do the proper testing (same testing as across the street) because that would be admitting that DTSC had not properly handled the site toxicity to begin with. <u>DTSC behavior has been unconventional and inconsistent with their own guidelines.</u>
- From the Eskenazi article: Dan Grasmick, an engineer and <u>environmental</u> <u>consultant</u> speaking on behalf of the neighborhood association, went further. At last week's meeting, he called the state's tests "seriously flawed," and said its testing regimen "appears to have been designed to not identify a primary source."

Reference the Aug 19, 2023 SF Chronicle JK Dineen article:

• One of the Commissioners said "I see a very bright line between the contamination which needs to be remediated and the permit we are here to consider," ... "I don't think the permit is material to the contamination issues."

This argument makes no sense. The Appeal and the Contamination are directly linked and we are talking about endangerment of life. To approve the Permit and Deny the Appeal is to do nothing and allow the contamination to NOT be remediated.

This is Manifest Injustice.

• One of the Commissioners said (paraphrasing) "this seems to be the wrong venue to hear this case".

This is the appropriate venue. The courts are not an option where DTSC has immunity.

- One of the Commissioners also said: "Neighbors should have been able to argue their case to the Planning Commission and the Board of Supervisors, not just the Board of Appeals. "I don't think we should be the body imbued with this power, but unfortunately our state Legislature has ripped away the other layers of review."
- The BOA is the <u>only</u> venue currently. To deny this appeal is to do nothing about the proven contamination in the neighborhood. This is Manifest Injustice.
- To deny this appeal is Manifest Injustice and to turn our back on Public Health. This BOA venue IS our only change to have this case heard.

• One of the BOA Commissioners that supported the appeal on Aug 16thsaid:

Reporter Will Jarrett with Mission Local Aug 17, quoted another Commissioner: "I'm ready to grant the appeal, based on an overreliance on, and misplaced deference to, DTSC," said the Commissioner, referring to the Department of Toxic Substance Control. He contended that the agency did not meet and communicate enough with residents, and said he was disappointed it did not complete the additional soil vapor tests the Mid-Sunset Neighborhood Association requested. "If we really believe in affordable housing, if we really believe in the public health of the people of San Francisco, and future people in San Francisco, then we have to do this right," he said.

Please support this appeal for a Re-Hearing.

Thank You,

JJ Hollingsworth

1498 24th Avenue, SF CA 94122

From: <u>Michael Nohr</u>
To: <u>BoardofAppeals (PAB)</u>

Subject: Building permit appeal #23-034 for 2550 Irving Street Project

Date: Thursday, September 7, 2023 9:19:15 AM

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Dear BOA,

I attended the meeting on August 16th regarding Building permit appeal #23-034 for 2550 Irving Street Project.

Please remediate the toxins in the area before you build.

If the cite was too toxic for the employees of the credit union then why would you invest over \$100MM to build a 100 unit housing project until the area was cleared of toxins.

The last thing the city needs is to be sued for knowingly putting it's citizens in a toxic environment and then to have to tear down the building and do it right later on.

This makes no sense.

Yes, build housing, but do it properly.

Thank you!

From: Michael Weiss

To: BoardofAppeals (PAB); Rosenberg, Julie (BOA); Longaway, Alec (BOA)

Subject: Rehearing Request for Appeal No. 23-034

Date: Thursday, September 7, 2023 4:22:39 PM

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Dear President Swig and Members of the Board of Appeals,

We have been talking to a number of our neighbors who live near the 2550 Irving St. site, and many of us have decided not to give written or oral testimony on the request for a re-hearing. The inordinate amount of time provided to opponents of site cleanup at the last hearing was a betrayal to both this neighborhood and the future residents of 2550 (who have no one to speak for them). You have the ability to correct this injustice. We look forward to the opportunity to contribute to a hearing where both sides of the debate will be given equal time to make their case.

Thank you for your consideration,

Michael Weiss
Joan Barken
John Barken
Rumesha Ahmed
Adam Michaels
Yi-Kuan Lee
Deborah Murphy
Denise Daley
Mira Kopell
Celeste Marty

From: <u>Joan Klau</u>

To: BoardofAppeals (PAB); Longaway, Alec (BOA)

Subject: Re: Public Comment for Rehearing Request for Appeal #23-034

Date: Thursday, September 7, 2023 4:29:54 PM

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Resending to correct a typo.

---- On Thu, 07 Sep 2023 16:22:11 -0700 **Joan Klau <joan@klau.biz>** wrote ---

Dear President Swig and Members of the Board of Appeals,

I will keep my note short, because I genuinely hesitate to add to the burden of public comment before next week's hearing. But as the person who requested a meeting with DTSC a month prior to the August 16th BOA hearing, and spoke with DTSC about their need to delay the meeting, I was shocked at how deeply unfair DTSC's presentation at the August 16th BOA hearing was.

While DTSC did meet with MSNA at 4pm on August 15, it was a complete farce of a meeting – in which no one could or would answer any questions and the project supervisor who had all the data and answers was conspicuously absent, despite DTSC telling us a month earlier that this meeting had to be to postponed until August 15th due to that key staffer's schedule. During the August 15 meeting, they simply took notes on all our unanswered questions, but they refused to make any commitment about when we might get the answers or a copy of the presentation made to the neighbors. So you can imagine our frustration when DTSC showed up the next day at the BOA to present 40 pages of documentation, data, and findings for over an hour. Those documents did not materialize overnight – they had that information on August 15th, and they willfully withheld it so that we and our experts could not have time to review and respond to the new data, claims and assertions when they presented it for the first time to all of at the August 16th BOA hearing.

You have the power to correct this injustice, and hold DTSC accountable to fair and reasonable inquiry. Please don't let them get away with withholding information. I hope you will seriously consider rehearing this appeal, giving both sides equal time to present their findings.

Thank you for your consideration, Joan Klau 1273 27th Ave San Francisco, CA 94122

Longaway, Alec (BOA)

From: Eric Brooks <brookse32@sonic.net>
Sent: Thursday, September 7, 2023 4:30 PM

To: BoardofAppeals (PAB)

Subject: Strong Support of Appeal #23-034 - 2550 Irving Street

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Hello Board of Appeals members,

As a lead full time environmental organizer since the mid 1980s, and on behalf of the San Francisco environmental and social justice group Our City SF, which has worked diligently over the last two decades to protect San Francisco and California residents and workers from impacts of legacy toxic wastes in and near their homes and workplaces, I strongly urge you to support Building Permit Appeal #23-034 for the 2550 Irving Street Project.

There is clear evidence that not enough has been done to make absolutely certain, the safety of current and future residents and workers in and near this project from legacy contamination on and near the site. The Precautionary Principle, which is an approved element of San Francisco law, clearly demands that the burden is on the project sponsors to prove the safety of their project before it is allowed to proceed.

The project sponsors have not been able to secure such assurances, therefore the project must not be allowed to move forward.

Thank you for your consideration of this very important issue to public health and safety.

Sincerely,

Eric Brooks, Coordinator

Our City SF

https://url.avanan.click/v2/___http://ourcitysf.org____.YXAzOnNmZHQyOmE6bzoyMWU1Nzk2MmM3ZWM1MGE3YzljZGQ0OTY0YmNkNmYwYjo2OjcwM2U6M2YyOTk1MzBiZjM5ZDQzNzNlZTl0OThiZThjNzJlOTM1NDQ2ZjNkOTk1YzY4MTdkODg0NDhmNzNhNGFkMDk5MTpwOlQ

415-756-8844

From: Thomas Soper AIA

To: BoardofAppeals (PAB)

Subject: Appeal 23-034 Letter in support of the Appellant.

Date: Thursday, September 7, 2023 4:37:58 PM

This message is from outside the City email system. Do not open links or attachments from untrusted sources.

Project: 2550 Irving Street Housing project Appeal no 23-034 -in support of the Appellant

Dear Commissioners.

The hearing on September 13 will determine, consistent with Board of Appeal regulations, if a rehearing will be granted. It is of the utmost importance that the unique circumstances of this case be put into perspective.

I am a licensed Architect and Master planner with over 40 years of National, International and State wide housing experience. I have worked tirelessly and closely with State, Local and Federal many times and have always been able to sort out good solutions which serve everyone's interests. There is something very unusual and awry with DTSC on this job to let it pass.

I am also an affordable housing advocate and know how to get these important projects delivered when laws are not contradictory. The Problem has gotten obfuscated but simply put the problem is three-fold. (1) the permit holder's CLRRA agreement unfairly gives away the public's right and future resident's rights to not live on contaminated cancer-causing land. (2) DTSC, the AHJ in charge of contaminated brownfields, in this case is attempting to back-peddled a solution for a contamination field under multiple properties which normally are the responsibility of independent private contractors. Regulatory agencies usually inspect and check plans but do not normally invent the solutions. I will expand on this in the coming paragraphs. (3)This is a matter of a public health imperative with life-threatening and/or debilitating consequences. There are cancer deaths already adjacent to the project site. (site plan handed out at August 16 hearing)

The Mission local paper, this past August 21, pin-pointed the weak link in solving this health imperative in one of the commissioner's conclusions: "I'm ready to grant the appeal, based on an overreliance on, and misplaced deference to, DTSC."

I will leave the definitions of what is safe to the Appellant's experts, but I cannot over rely on DTSC. DTSC's credibility has been seriously damaged. As noted in the same article above, when a commissioner asked DTSC if he said, "Did you work with the Appellant's experts to try to work out a plan to incorporate their testing and remedy suggestions"; as reported by the Mission Local article, DTSC basically said, "I didn't do what you wanted, I did something else. And it cost a lot more money" — and you should be grateful". This is not the acceptable behavior or attitude of any State Official with which I have ever worked.

The Appellant's team of contamination experts who have been marginalized consistently, are known to all of us licensed professionals as the go-to, the day-to-day experts, including not just PhD Toxicologists, but in the appellant's case, an MD/PhD Toxicologist on contamination. These professionals encounter contamination complexities and make them practical in all their variations. The appellant experts disagree <u>profoundly</u> with the DTSC's spokesman and his PhD toxicologist. In the August 16 hearing, the Appellant's Professional geologist who has worked with DTSC many times, called the State's tests "seriously flawed," and said its testing regimen "appears to have been designed to not identify a primary source."

But DTSC's testimony as noted in the SF Chronicle Article, dated August 19, 2023, shed light on DTSC's effectiveness to befuddle many. Their testimony was designed to be abstruse and at times to state purely hypothetical non-sense. As an unjust consequence, this has mislead some on this Board to say, "I see a very bright line between the contamination which needs to be <u>remediated</u> and the permit we are here to consider," ... "I don't think the permit is material to the contamination issues." With all due respect, this argument makes no sense. The Appeal and the Contamination are directly linked. If it needs to be remediated, it needs to be remediated. The Board Of Appeals was conceived for this very instance: De novo purview particularly suits and uniquely empowers the Board for seeing a dispute especially if other agencies are not aware of intended consequences. Even City Attorneys, State Senators or Mayor says, "Our hands are tied". We need to pause and remember we are talking about endangerment of life. To approve the Permit and Deny the Appeal is to do nothing and allow the contamination to NOT be remediated.

With the greatest respect to all of your tireless and important checks and balances work for this City, I strongly urge you to grant a rehearing in this case and give the appellant's experts a fair chance to make clear to you how this project can be done for less money, without impeding the construction schedule. The neighborhood has been vilified long enough for the "chilling effect" and is caused by others.

Sincerely,

Thomas Soper C18302

Thomas Soper AIA
Architect NCARB LEED AP
P 1.415.902.9457
F 1.415.566.0465

DC	C	IU:	ME	EN.	TS	SL	JB'	MI	IT٦	ΓΕΙ) I	FO	R	TI	HE	: ()R	IG	IN	IAI	LH	IE/	٩R	IN	G	DA	١T	ED	A	\U	Gl	JS	T	16	. 2	202	23
_	_				-	_	_				_	_						_							_				•	_	_		-		, –		

APPEAL NO. 23-034 FILE LINK: https://app.box.com/s/tk12qdky2om6phgebyj2like8sb05kju